1.5-50X Track Stand Nosepiece Video Zoom Microscope MZ02370231

SKU:
MZ02370231
Warranty:
5/1 Years
Condition:
New
  • 1.5-50X Track Stand Nosepiece Video Zoom Microscope MZ02370231
  • 1.5-50X Track Stand Nosepiece Video Zoom Microscope MZ02370231
  • 1.5-50X Track Stand Nosepiece Video Zoom Microscope MZ02370231
  • 1.5-50X Track Stand Nosepiece Video Zoom Microscope MZ02370231
  • 1.5-50X Track Stand Nosepiece Video Zoom Microscope MZ02370231
$4,066.88
& Free shipping * Contiguous USA Only
In Stock
Other Shipping Options
Quick Overview
Infinite. Total Magnification: 1.5-50X. 5X 10X 20X Infinity-Corrected Super-Long Working Distance Plan Apochromatic Objective. Standard Coupler: 0.5X. Zoom Ratio: 1:8.3. Body Mounting Size for Stand: Dia. 39.5mm. Track Stand. LED Light. Light Adjustable. Input Voltage: AC 90-240V 50/60Hz.


MZ02370231 Nosepiece Video Zoom Microscope
Optical System Specifications
Optical SystemInfinite
System Optical Magnification1.5-50X
Total Magnification1.5-50X
Standard Objective5X 10X 20X Infinity-Corrected Super-Long Working Distance Plan Apochromatic Objective
Standard Coupler0.5X
System Working Distance31-45mm
Video Monocular Zoom Body
0.6-5X Video Zoom Body
Body Optical SystemInfinite
Body Magnification0.6-5X
Zoom Range0.6-5X
Zoom Ratio1:8.3
Zoom Operating ModeWith the Nosepiece
Body Mounting Size for Stand Dia. 39.5mm
Body Mount Type for CouplerFastening Screw
Body Mount Size for Coupler Dia. 30mm
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack
Net Weight0.22kg (0.49lbs)
Infinity-Corrected Long Working Distance Objective
5X Infinity-Corrected Super-Long Working Distance Plan Apochromatic Objective
Objective Optical SystemInfinite
Objective Optical Magnification5X
Objective TypePlan Apochromatic Objective
Objective Parfocal Distance95mm
Objective Focal Length40mm
Objective for Focal Length200mm
Objective Working Distance45mm
Numerical Aperture (N.A.)N.A. 0.13
Objective Resolution2μm
Objective Cover Glass Thickness/0
Objective Immersion MediaDry Objective
Objective Screw ThreadM26x1/36 in.
Objective Outer Diameter Dia. 32.2mm
Diameter of Image Focal Plane Dia. 25mm
Surface TreatmentElectroplating Black
MaterialCopper
ColorBlack
Net Weight0.18kg (0.40lbs)
Applied FieldFor MT1802, MT0202, MS0201, LM1802 Series Microscope. Mitutoyo MF-U/HyperMF-U/FS70/VMU/WIDE VMU Microscope. Motic PSM-1000 Microscope
Objective CasingNon-magnetic
10X Infinity-Corrected Super-Long Working Distance Plan Apochromatic Objective
Objective Optical SystemInfinite
Objective Optical Magnification10X
Objective TypePlan Apochromatic Objective
Objective Parfocal Distance95mm
Objective Focal Length20mm
Objective for Focal Length200mm
Objective Working Distance34mm
Numerical Aperture (N.A.)N.A. 0.28
Objective Resolution1μm
Objective Cover Glass Thickness/0
Objective Immersion MediaDry Objective
Objective Screw ThreadM26x1/36 in.
Objective Outer Diameter Dia. 35mm
Diameter of Image Focal Plane Dia. 25mm
Surface TreatmentElectroplating Black
MaterialCopper
ColorBlack
Net Weight0.19kg (0.42lbs)
Applied FieldFor MT1802, MT0202, MS0201, LM1802 Series Microscope. Mitutoyo MF-U/HyperMF-U/FS70/VMU/WIDE VMU Microscope. Motic PSM-1000 Microscope
Objective CasingNon-magnetic
20X Infinity-Corrected Super-Long Working Distance Plan Apochromatic Objective
Objective Optical SystemInfinite
Objective Optical Magnification20X
Objective TypePlan Apochromatic Objective
Objective Parfocal Distance95mm
Objective Focal Length10mm
Objective for Focal Length200mm
Objective Working Distance31mm
Numerical Aperture (N.A.)N.A. 0.29
Objective Resolution1μm
Objective Cover Glass Thickness/0
Objective Immersion MediaDry Objective
Objective Screw ThreadM26x1/36 in.
Objective Outer Diameter Dia. 35mm
Diameter of Image Focal Plane Dia. 25mm
Surface TreatmentElectroplating Black
MaterialCopper
ColorBlack
Net Weight0.22kg (0.49lbs)
Applied FieldFor MT1802, MT0202, MS0201, LM1802 Series Microscope. Mitutoyo MF-U/HyperMF-U/FS70/VMU/WIDE VMU Microscope. Motic PSM-1000 Microscope
Objective CasingNon-magnetic
Nosepiece
Triple (3) Holes Nosepiece
Inward/Outward NosepieceNosepiece Inward
Number of Holes on NosepieceTriple (3) Holes
Nosepiece Switch ModeManual
Nosepiece Screw Thread for ObjectiveRMS Standard (4/5 in. x1/36 in. )
Nosepiece Mounting Size for Microscope Body Dia. 25mm
MaterialMetal
ColorSilver
Net Weight0.18kg (0.40lbs)
Track Stand
76mm Fine Focus Track Stand
Stand TypeTrack Stand
Holder Adapter Type Dia. 76mm Scope Holder
Track Length325mm
Base TypeTable Base
Base ShapeRectangle
Stand Throat Depth121mm
Base Dimensions320x305x16mm
Focus ModeManual
Coarse/Fine Focus TypeCoaxial Coarse/Fine Focus
Focus Distance200mm
Fine Focus Travel Distance200mm
Coarse Focus Distance per Rotation23mm
Fine Focus Distance per Rotation0.56mm
Focusing Knob Tightness AdjustableTightness Adjustable
Surface TreatmentSpray Paint
MaterialMetal
ColorWhite
Net Weight3.35kg (7.39lbs)
Dimensions320x305x341mm (12.598x12.008x13.425 in. )
Donut Adapter
40/76mm Donut
Donut Adapter TypeScope Mounting Converter
Donut Adapter Size for Scope Mounting Dia. 40mm
Donut Adapter Size for Scope Holder Dia. 76mm
Donut Adapter Height20mm
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack
Net Weight0.18kg (0.40lbs)
Applied FieldFor MZ07011101 Video Zoom Body
Microscope Plate
95x5mm Black White Plate
Plate TypeBlack White Plate
Plate Size Dia. 95x5mm
MaterialPlastic (ABS)
ColorBlack, White
Applied FieldFor ST0201, ST0501, ST1901, ST0801, ST0802 Series Post Stand. ST0203, ST0204 ST0403 Series Track Stand
Coaxial Reflection Illuminator
Coaxial Illuminator
Illuminator Mount Type for BodyFastening Screw
Illuminator Mount Size for Body Dia. 30mm
Illuminator Mount Type for ObjectiveThread Screw
Illuminator Mount Size for Objective Dia. 25mm
Vertical Illuminator Adapter Size Dia. 11mm
Surface TreatmentBlack Oxide Finish
MaterialMetal
ColorBlack
Net Weight0.06kg (0.13lbs)
Dimensions Dia. 38X33X63mm
Spot Light
3W LED Point Light ( Dia. 11mm)
Light Source TypeLED Light
Light Head Adapter Size Dia. 11mm
Power Supply AdjustableLight Adjustable
Power Box Panel Meter DisplayPointer Panel Meter/Scale
Power Box Cooling SystemHeat Sink
Power Box Dimensions125x70x30mm
Output Power3W
Input VoltageAC 90-240V 50/60Hz
Power Cord Connector TypeUSA 2 Pins
Power Cable Length1.3m
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack
Net Weight0.32kg (0.71lbs)
Coupler/C-mount Adapter
0.5X Coupler
Coupler Mount Type for BodyFastening Screw
Coupler Mount Size for Body Dia. 30mm
Adjustable CouplerAdjustable
Coupler for Microscope TypeVideo Zoom Lens Compatible
Coupler Magnification0.5X
C/CS-Mount CouplerC-Mount
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack
Net Weight0.13kg (0.29lbs)
Applied FieldFor MZ3701 Series Video Zoom Body
Other Parameters
Surface TreatmentSpray Paint
MaterialMetal
ColorBlack
Net Weight4.70kg (10.36lbs)
Series
MZ3701MZ02370231

 


Technical Info

Instructions
Video Zoom LensClose Λ
Video zoom lens, refers to microscope that has only one set of imaging optical paths. It can be considered as a set of dual optical path stereo microscopes. The magnification and multiple range of video zoom lens are usually the same as those of a stereo microscope, but because the objective lens is one, its optical imaging is flat, not stereoscopic.

It has been observed that as most of the parametric features are close to stereo microscopes, video zoom lens is then classified as stereo microscope. In fact, it lacks the most important "stereoscopic" imaging features. Compared with other compound microscopes such as biological metallurgical microscopes, the total optical magnification of video zoom lens is generally below 40X, which is the coverage of low magnification range that these microscopes do not have.

Most of the video continuous zoom lens is to observe the electronic image, not through the eyepiece, but through the camera.
Video zoom lens can have relatively more objective lens and photographic eyepiece multiples for selection. At the same time, video zoom lens can also be designed as parallel light so as to add even more configuration accessories, such as observation eyepieces, aperture diaphragms, coaxial illumination light sources, reticles, and nosepieces that can change the viewing angle and direction, etc.
Regarding accessories of video zoom lens such as the stands and light source etc., generally, all accessories of stereo microscope can be used. Therefore, video zoom lens combination is flexible, compact, with strong adaptability and low cost, suitable for use in industry, especially extensively used in the electronics industry.
InfiniteClose Λ
Microscopes and components have two types of optical path design structures.
One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope.
Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required.
The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects.

The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough.
Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective.
System Optical MagnificationClose Λ
The magnification of the objective lens refers to the lateral magnification, it is the ratio of the image to the real size after the original image is magnified by the instrument. This multiple refers to the length or width of the magnified object.
System optical magnification is the product of the eyepiece and the objective lens (objective lens zoom set) of the optical imaging part within the system.
Optical magnification = eyepiece multiple X objective lens/objective lens set

The maximum optical magnification of the microscope depends on the wavelength of the light to which the object is illuminated. The size of the object that can be observed must be greater than the wavelength of the light. Otherwise, the light cannot be reflected or transmitted, or recognized by the human eye. The shortest wavelength of ultraviolet light is 0.2 microns, so the resolution of the optical microscope in the visible range does not exceed 0.2 microns, or 200 nanometers. This size is converted to the magnification of the microscope, and it is the optical magnification of 2000X. Usually, the compound microscope can achieve 100X objective lens, the eyepiece is 20X, and the magnification can reach 2000X. If it is bigger, it will be called "invalid magnification", that is, the image is large, but the resolution is no longer increased, and no more details and information can be seen.
Total MagnificationClose Λ
Total magnification is the magnification of the observed object finally obtained by the instrument. This magnification is often the product of the optical magnification and the electronic magnification.
When it is only optically magnified, the total magnification will be the optical magnification.

Total magnification = optical magnification X electronic magnification
Total magnification = (objective X photo eyepiece) X (display size / camera sensor target )
System Working DistanceClose Λ
Working distance, also referred to as WD, is usually the vertical distance from the foremost surface end of the objective lens of the microscope to the surface of the observed object.
When the working distance or WD is large, the space between the objective lens and the object to be observed is also large, which can facilitate operation and the use of corresponding lighting conditions.
In general, system working distance is the working distance of the objective lens. When some other equipment, such as a light source etc., is used below the objective lens, the working distance (i.e., space) will become smaller.

Working distance or WD is related to the design of the working distance of the objective lens. Generally speaking, the bigger the magnification of the objective lens, the smaller the working distance. Conversely, the smaller the magnification of the objective lens, the greater the working distance.
When it is necessary to change the working distance requirement, it can be realized by changing the magnification of the objective lens.
Video Monocular Zoom BodyClose Λ
Video monocular zoom body is a zoom body that has only one set of optical paths, and it is also the body of the video continuous zoom.
The upper end of the microscope body can be connected to the standard C-interface photo eyepiece, and then connected to the microscope camera; the lower end is the objective lens, and the objective lens of parallel structure is generally separated from the body, whereas the microscope body of finite structure is combined with the objective lens.
Some bodies of microscope have also a light source coaxial illumination device.
Zoom RangeClose Λ
Zoom in zoom microscope means to obtain different magnifications by changing the focal length of the objective lens within a certain range through adjustment of some lens or lens set while not changing the position of the object plane (that is, the plane of the point of the observed object perpendicular to the optical axis) and the image plane (that is, the plane of the image imaging focus and perpendicular to the optical axis) of the microscope.
Zoom range refers to the range in which the magnification is from low to high. In the zoom range of the microscope, there is no need to adjust the microscope knob for focusing, and ensure that the image is always clear during the entire zoom process.
The larger the zoom range, the stronger the adaptability of the range for microscope observation, but the image effects at both ends of the low and high magnification should be taken into consideration, the larger the zoom range, the more difficult to design and manufacture, and the higher the cost will be.
Zoom RatioClose Λ
Zoom ratio is the ratio of the maximum magnification / the minimum magnification. Expressed as 1: (ratio of maximum magnification / minimum magnification). If the maximum magnification is 4.5X, the minimum magnification is 0.7X, then the zoom ratio = 4.5 / 0.7 = 6.4, the zoom ratio will be 1:6.4.
Zoom ratio is obtained by the intermediate magnification group of the microscope. When the magnification is increased or decreased by using other objective lenses, the zoom ratio does not change accordingly.
With the NosepieceClose Λ
When the microscope body changes the magnification, it is realized by adjusting the zoom drum or nosepiece. Generally, the lower case of the microscope is used as the zoom drum or nosepiece. When magnification conversion is required, it can be realized by turning the zoom drum or nosepiece.
Objective Optical MagnificationClose Λ
The finite objective is the lateral magnification of the primary image formed by the objective at a prescribed distance.

Infinite objective is the lateral magnification of the real image produced by the combination of the objective and the tube lens.
Infinite objective magnification = tube lens focal length (mm) / objective focal length (mm)

Lateral magnification of the image, that is, the ratio of the size of the image to the size of the object.
The larger the magnification of the objective, the higher the resolution, the smaller the corresponding field of view, and the shorter the working distance.
Objective TypeClose Λ
In the case of polychromatic light imaging, the aberration caused by the light of different wavelengths becomes chromatic aberration. Achromatic aberration is to correct the axial chromatic aberration to the two line spectra (C line, F line); apochromatic aberration is to correct the three line spectra (C line, D line, F line).
The objective is designed according to the achromaticity and the flatness of the field of view. It can be divided into the following categories.

Achromatic objective: achromatic objective has corrected the chromatic aberration, spherical aberration, and comatic aberration. The chromatic portion of the achromatic objective has corrected only red and green, so when using achromatic objective, yellow-green filters are often used to reduce aberrations. The aberration of the achromatic objective in the center of the field of view is basically corrected, and as its structure is simple, the cost is low, it is commonly used in a microscope.

Semi-plan achromatic objective: in addition to meeting the requirements of achromatic objective, the curvature of field and astigmatism of the objective should also be properly corrected.
Plan achromatic objective: in addition to meeting the requirements of achromatic objectives, the curvature of field and astigmatism of the objective should also be well corrected. The plan objective provides a very good correction of the image plane curvature in the field of view of the objective, making the entire field of view smooth and easy to observe, especially in measurement it has achieved a more accurate effect.

Plan semi-apochromatic objective: in addition to meeting the requirements of plan achromatic objective, it is necessary to well correct the secondary spectrum of the objective (the axial chromatic aberration of the C line and the F line).
Plan apochromatic objective: in addition to meeting the requirements of plan achromatic objective, it is necessary to very well correct the tertiary spectrum of the objective (the axial chromatic aberration of the C line, the D line and the F line) and spherochromatic aberration. The apochromatic aberration has corrected the chromatic aberration in the range of red, green and purple (basically the entire visible light), and there is basically no limitation on the imaging effect of the light source. Generally, the apochromatic aberration is used in a high magnification objective.

Objective Parfocal DistanceClose Λ
Objective parfocal distance refers to the imaging distance between the objective shoulder and the uncovered object surface (referred to as the “object distance). It conforms to the microscope design, usually 45mm.
The objective of different magnifications of the compound microscope has different lengths; when the distance between the objective shoulder and the object distance is the same, the focal length may not be adjusted when converting to objectives of different magnifications.
Objective for Focal LengthClose Λ
Objective for focal length is a design parameter of the tube focal length of the microscope that the objective is suitable for.
Objective Working DistanceClose Λ
The objective working distance is the vertical distance from the foremost surface end of the objective of the microscope to the object surface to be observed.
Generally, the greater the magnification, the higher the resolution of the objective, and the smaller the working distance, the smaller the field of view. Conversely, the smaller the magnification, the lower the resolution of the objective, and the greater the working distance, and greater the field of view.
High-magnification objectives (such as 80X and 100X objectives) have a very short working distance. Be very careful when focusing for observation. Generally, it is after the objective is in position, the axial limit protection is locked, then the objective is moved away from the direction of the observed object.
The relatively greater working distance leaves a relatively large space between the objective and the object to be observed. It is suitable for under microscope operation, and it is also easier to use more illumination methods. The defect is that it may reduce the numerical aperture of the objective, thereby reducing the resolution.
Numerical Aperture (N.A.)Close Λ
Numerical aperture, N.A. for short, is the product of the sinusoidal function value of the opening or solid angle of the beam reflected or refracted from the object into the mouth of the objective and the refractive index of the medium between the front lens of the objective and the object.
Simply speaking, it is the magnitude of the luminous flux that can be brought in to the mouth of the objective adapter, the closer the objective to the specimen for observation, the greater the solid angle of the beam entering the mouth of the objective adapter, the greater the N.A. value, and the higher the resolution of the objective.
When the mouth of the objective adapter is unchanged and the working distance between the objective and the specimen is constant, the refractive index of the medium will be of certain meaning. For example, the refractive index of air is 1, water is 1.33, and cedar oil is 1.515, therefore, when using an aqueous medium or cedar oil, a greater N.A. value can be obtained, thereby improving the resolution of the objective.

Formula is:
N.A. = refractive index of the medium X sin solid angle of the beam of the object entering the front lens frame of the objective/ 2

Numerical aperture of the objective. Usually, there is a calculation method for the magnification of the microscope. That is, the magnification of the microscope cannot exceed 1000X of the objective. For example, the numerical aperture of a 100X objective is 1.25, when using a 10X eyepiece, the total magnification is 1000X, far below 1.25 X 1000 = 1250X, then the image seen in the eyepiece is relatively clear; if a 20X eyepiece is used, the total magnification will reach 2000X, much higher than 1250X, then eventhoughthe image actually seen by the 20X eyepiece is relatively large, the effect will be relatively poor.
Objective ResolutionClose Λ
Objective resolution is the distance that can be distinguished between the two mass points on the object plane, or the number of pairs that can be distinguished within 1mm of the image place. Usually, its unit is expressed as the number of pairs/mm.
In general, the greater the magnification, the higher the resolution.
Under the same objective magnification, the greater the numerical aperture (N.A.) of the objective, the higher the resolution of the objective. Numerical aperture (N.A.) is the most important technical index reflecting the resolution of the objective.
The objective is located at the forefront of the object being observed. When the objective magnifies and forms an image, the rear eyepieces and other equipment are to magnify again. When the eyepiece magnifies enough, one may only get a large enough but blurred image. Therefore, if the front-end objective cannot distinguish, neither can the rear device or equipment distinguish againmore information. The objective is the most important part of a microscope.
Objective Cover Glass ThicknessClose Λ
The thickness of the cover glass affects the parfocal distance of the objective. Usually, in the design of the focal length of the objective,the thickness of the cover glass should be considered, and the standard is 0.17mm.
Objective Immersion MediaClose Λ
The use of different media between the objective and the object to be observed is to change and improve the resolution. For example, the refractive index of air is 1, water is 1.33, and cedar oil is 1.515. Therefore, when using an aqueous medium or cedar oil, a greater N.A. value can be obtained, thereby increasing the resolution of the objective.
Air medium is called dry objective, where oil is used as medium iscalled oil immersion objective, and water medium is called water immersion objective.
However, because of the working distance of the objective, when the working distance of the objective is too long, the use of liquid medium will be relatively more difficult, and it is generally used only on high magnification objective having a shorter working distance, such as objectives of 60X, 80X and 100X.

When using oil immersion objective, first add a drop of cedar oil (objective oil) on the cover glass, then adjust the focus (fine adjustment) knob, and carefully observe it from under the side of the objective of the microscope, until the oil immersion objective is immersed in the cedar oil and close to the cover glass of the specimen, then use the eyepiece to observe, and use the fine focus knob to lift the tube until the clear imageof the specimen is clearly seen.
The cedar oil should be added in an appropriate amount. After the oil immersion objective is used, it is necessary to use a piece of lens wiping tissue to dip xylene to wipe off the cedar oil, and then wipe dry the lens thoroughly with a lens wiping tissue.
Objective Screw ThreadClose Λ
For microscopes of different manufacturers and different models, the thread size of their objectives may also be different.
In general, the objective threads are available in two standard sizes, allowing similar objectives between different manufacturers to be used interchangeably.
One is the British system: RMS type objective thread: 4/5in X 1/36in,
One is metric: M25 X 0.75mm thread.
Track StandClose Λ
Throughout the focusing range, the track stand moves up and down along the guide rail through the focusing mechanism to achieve the purpose of focusing the microscope. This kind of structure is relatively stable, and the microscope is always kept moving up and down vertically along a central axis. When the focus is adjusted, it is not easy to shake, and there is no free sliding phenomenon. It is a relatively common and safe and reliable accessory.
The size of the stand is generally small, flexible and convenient, and most of them are placed on the table for use, Therefore, together with the post stand, it is also called “desktop or table top stand".
With regard to the height of the stand, most manufacturers usually do not make it very high. If the guide rail is long, it is easy to deform, and relatively more difficult .
Dia. 76mm Scope HolderClose Λ
The 76mm stand scope holder is the most popular microscope body adapter size, suitable for stereo microscopes produced by most manufacturers.

Place the microscope body in a 76mm scope holder, tighten with screws to avoid shaking when the microscope is in use.
Because this stand scope holder is very common, some special-sized microscopes can also borrow and use this stand, but only need a specific adapter to connect the microscope body with a diameter of less than 76mm.
Stand Throat DepthClose Λ
Stand throat depth, also known as the throat depth, is an important parameter when selecting a microscope stand. When observing a relatively large object, a relatively large space is required, and a large throat depth can accommodate the object to move to the microscope observation center.
Coaxial Coarse/Fine FocusClose Λ
Focus mechanism, the coarse / fine focus knobs are in a coaxial center position, they are connected together by a gear reduction mechanism, which can be coarse/ fine focus adjusted at any time during the entire stroke.
Generally, the coarse focus diameter is relatively big, which is inside close to the body of the microscope, and the fine focus diameter is relatively small, which is outside of the body of the microscope. Coarse focus adjustment is used to quickly move to find the image, and the fine focus adjustment is used to finely adjust the clarity of the image. Generally, the minimum read value of the fine focus adjustment can be accurate to 1 micron, and single circle can reach a stroke of 0.1 mm. Mechanical fine focus plays a very important role in the accuracy of the microscope resolution. If the fine focus accuracy is not enough, or cannot be stabilized at the sharpest focusing position, the image will be out of focus and become blurred.
The tightness of coarse focus is generally adjustable. Generally, on one side of the knob (usually on the right side), there is a textured knob on the inside of the coarse knob, which is tightened if rotated clockwise; and loosened if rotated counterclockwise.

In the process of focusing, direct focusing should not be on the objective of high magnification; instead, find the object of low magnification first, and gradually adjust to high magnification. Usually, the coarse focus knob is rotated first, and when the objective lens is gradually lowered or the platform is gradually rising, find the object, and then adjust with the fine focus, until the object image in the field of view is clear. Generally, when changing from low magnification to high magnification objective, one only need to slightly adjust the fine focus knob to make the object image clear. During the process, the distance between the objective and the specimen should be observed from the side, to understand the critical value of the object distance between the lens and the specimen.
When using a high magnification objective, since the distance between the objective and the specimen is very close, after the image is found, the coarse focus knob cannot generally be used, and the fine focus knob can only be used to avoid excessive distance of movement, damaging the objective and the slide or specimen.

By using the characteristics of the fine focus, the height or thickness of the observed object can be roughly measured under the microscope, such as measuring the thickness of the cell or tissue, the thickness of the cover glass, and the thickness of small objects that cannot be measured by various conventional measuring instruments.
Method of measurement: place the object to be measured at the center of the field of view of the stage. After the image is clearly focused, try to use the highest magnification objective as much as possible, and align the adapter of the top feature point of the object to be measured. After adjusting clear, record the position of scale of the fine focus knob. Then, move the objective down to the adapter of the lowest feature point of the object to be measured, and record the position of scale of the fine focus knob. Then, according to the above fine focus, record the number of rounds of movement, and based on the parameters of conversion of each round into stroke (see the microscope fine focus knob parameters), the number of rounds is converted into the total stroke, which is the height of the object to be measured. If it is repeated a few times for average, a more accurate measurement can be obtained.
Focusing Knob Tightness AdjustableClose Λ
Different microscope bodies, different human operations, and different requirements for observation and operation, all require adjustment of the pre-tightening force of the stand that support microscope body.
Facing the stand just right, use both hands to reverse the force to adjust the tightness. (face the knob of one side just right, clockwise is to tighten, counterclockwise is to loosen)
In general, after long-time use, the knob will be loose, and adjustment is necessary.
Donut AdapterClose Λ
Donut adapter is an adapter used to convert the scope holder of the microscope and the size of the microscope body. For different manufacturers and different types of microscopes, as well as different stands, their adapters are often different and not interchangeable. This type of donut adapter can be used to connect different microscope stands and microscope bodies, which is very convenient for interchange of different manufacturers and microscope models.
It is usually to use this adapter cable to fix it to the body of the microscope, which is equivalent to changing the fixed diameter of the microscope, and then placing it on the microscope stand.
Microscope PlateClose Λ
According to different objects to be observed, the appropriate platen should be selected. The microscope plate materials include black and white, black and white finish; transparent glass, frosted glass, metal, etc.
Standard stands are generally configured with a suitable microscope plate, but different plates may need to be purchased separately.
Black and white microscope plate are made of general plastics, and the different backgrounds in black and white make the object more prominent.
Finish microscope plate eliminates reflections during observation.
Transparent glass plate is used when observing transparent or translucent objects, and the use of transmitted light source is to make the light penetrate the object to be observed as much as possible.
Finish glass plate, with its rough glass surface, can make the transmitted light more uniform and create a diffusing effect, avoiding exposure of the light shadow of the filament directly onto to the observed object.
Metal plate, relatively more solid, is more suitable when it is necessary to operate and cut.
Microscope plate is generally round shaped, on one side of the base there is a spring clip. When installing, align the plate with the clamp and push it in, and then press down the other end, so that the plate is smoothly embedded in to the circular card slot of the bottom plate.
When removing, grab the other end of the clip, push and lift up the plate.
Coaxial Reflection IlluminatorClose Λ
Coaxial reflection light is realized by a coaxial reflection illuminator. Coaxial reflection illuminator is placed horizontally, parallel to the worktable, and is at a 90 degree angle to the optical axis of the microscope. When the illumination light passes through the coaxial reflection illuminator, the light is first turned through a reflection prism or beam splitter to a 90-degree angle, and is vertically (or nearly vertical) irradiated onto the surface of the object to be observed, and then reflected back to enter into the eyepiece through the objective lens.
The coaxial reflected light is suitable for illuminating planar objects and objects with high reflectivity. In addition, when the opaque or translucent objects are observed by large magnification objective lens, if the working distance is too short and an external light source cannot be used, the coaxial reflected light may be the best and the only choice.

Coaxial reflection illuminator, usually consisting of illumination light source, lamp chamber, condenser lens, aperture diaphragm and field diaphragm, color filter converter, and heat sink etc., achieves light emission and control.

The light or lamp chamber is generally made of a metal shell, with a ventilating vent or heat sink on the outside, but does not leak light, and has a spiral or top wire mechanism for adjusting the light axis.

Light source filament position and coaxial adjustment of the center of the optical axis
Because the illumination source is modularized with the microscope body and also, when in use, due to movement operation etc., the position of the filament of the illumination source and the illumination optical axis often deviate, which causes the Kohler illumination system to be damaged, thereby affecting the brightness of the field of view and the uniformity of illumination.
The main reason that affects the uniformity of illumination is that the position of the filament of the light source is not on the optical axis, which makes the field of view appear uneven. The main reason that affects the brightness of the field of view is that, after passing through the condenser for condensation, the illumination light is not focused on the aperture diaphragm plane.
The above therefore needs to adjust the position of the bulb in the coaxial reflection illuminator. Firstly, by adjusting the positioning screw on the light source, change the position of the lamp holder, and adjust the illumination bulb up and down, left and right, so that the filament is located on the optical axis of the center. Then, loosen the fixing screws on the condenser, move the condenser back and forth, so that the illumination light will converge at the center of the aperture diaphragm, and then tighten the screws. This not only makes the illumination in the field of view the brightest, but also uniform, and has no filament image.
Some metallurgical microscopes are equipped with "light chamber adjustment objective lens". When using, first remove an objective lens, rotate the light chamber adjustment objective lens into the nosepiece, and transfer it into the imaging light path, and replace the objective lens for the above adjustment.
Spot LightClose Λ
Spot light source of microscopic illumination, usually refers to the “spot” or dot shaped light source, converged at the light exits after the power source emits light. It is usually used for “oblique illumination”, and can be angled with the optical axis of the microscope, very suitable for illumination detecting the cracks, pipe walls etc. of some objects with “height and depth”. When focusing is required, a lens can be added in front of the spot light source for light concentration, making the illumination more uniform.
The focal length of the spot light source usually falls directly on the focal plane of the lens/surface of the reflector in order to achieve maximum brightness and illumination effect.

In spot light source, there is a kind of dual point light. In optical fiber illumination, it is called double pipe light guide, which can adjust the angle and brightness freely, so as to adjust the light and shadow of the illumination to reach the optimal position.

There are also spot light source, which are split into multiple points of illumination on a ring to become a multi-point illumination source, it is a compromise between ring illumination and spot illumination.
Light AdjustableClose Λ
The brightness of the light source adjustable is very important in the imaging of the microscope. Since the difference of the numerical aperture of the objective lens of high magnification and low magnification is very big, more incident light is needed to achieve a much better resolution when using a high magnification objective lens. Therefore, when observing through a high magnification objective lens, the brightness required is high; when observing through a low magnification objective lens, the brightness required is low.
When observing different objects, or feature points of the same object at different positions, the brightness needs are also different; including the difference of background light or reflection within the field of view of observation, it has a great influence on the effect of observing the object, and therefore one needs to adjust the brightness of the light source according to each object to be observed.
In the light source capable of providing continuous spectrum, such as a halogen lamp, the brightness adjustment of the light not only adjusts the brightness and intensity of the light, but also changes the spectrum emitted by the light source. When the light source is dark, there are many components of red light, and when the brightness is high, there are more blue spectrum. If the required light is strong and the spectrum needs to be changed, the light can be kept at a brighter intensity, which is solved by adjusting the spectrum by adding a color filter.

Take note of the dimming button on the light source, after the On/Off switch is turned on, normally clockwise is to brighten, and counterclockwise is to darken.
If it is adjusted to the lowest brightness, the light source should normally be lit. If the naked eye still can't see the object being illuminated brightly, you need to adjust the brightness knob to a much bigger position.
Generally, there is scale marking on the dimming knob, which is an imaginary number representing the percentage of brightness, or an electronic digital display, giving the brightness of the light source under the same conditions a marking.
Coupler/C-mount AdapterClose Λ
Coupler/C-mount adapter is an adapter commonly used for connection between the C-adapter camera (industrial camera) and a microscope.
Adjustable CouplerClose Λ
On the coupler/C-mount-adapter, there is an adjustable device to adjust the focal length.
Coupler for Microscope TypeClose Λ
Different coupler/C-mount-adapters are suitable for different microscopes. For some, some adapter accessories need to be replaced. See the applicable range of each coupler/C-mount-adapter for details.
Coupler MagnificationClose Λ
Coupler magnification refers to the line field magnification of the coupler/C-mount-adapter. With different magnifications of the adapter lens, images of different magnifications and fields of view can be obtained. The size of the image field of view is related to the sensor size and the coupler/C-mount-adapter magnification.

Camera image field of view (mm) = sensor diagonal / coupler/C-mount-adapter magnification.

For example: 1/2 inch sensor size, 0.5X coupler/C-mount-adapter coupler, field of view FOV (mm) = 8mm / 0.5 = 16mm.
The field of view number of the microscope 10X eyepiece is usually designed to be 18, 20, 22, 23mm, less than 1 inch (25.4mm). Since most commonly used camera sensor sizes are 1/3 and 1/2 inches, this makes the image field of view on the display always smaller than the field of view of the eyepiece for observation, and the visual perception becomes inconsistent when simultaneously viewed on both the eyepiece and the display. If it is changed to a 0.5X coupler/C-mount-adapter, the microscope image magnification is reduced by 1/2 and the field of view is doubled, then the image captured by the camera will be close to the range observed in the eyepiece.
Some adapters are designed without a lens, and their optical magnification is considered 1X.
C/CS-Mount CouplerClose Λ
At present, the coupler/C-mount adapter generally adopts the C/CS-Mount adapter to match with the industrial camera. For details, please refer to "Camera Lens Mount".
PackagingClose Λ
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection.
For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem.

 


Optical Data

 

Video Microscope Optical Data Sheet
P/NObjective Coupler
MZ37016131  (0.5X)
Magnification
MT060332415X1.5-12.5X
MT0603334110X3-25X
MT0603344120X6-50X
1. Magnification=Objective Optical Magnification * Body Magnification * Coupler Magnification



Camera Image Sensor Specifications
No.Camera Image Sensor SizeCamera image Sensor Diagonal
(mm)(inch)
11/4 in. 4mm0.157"
21/3 in. 6mm0.236"
31/2.8 in. 6.592mm0.260"
41/2.86 in. 6.592mm0.260"
51/2.7 in. 6.718mm0.264"
61/2.5 in. 7.182mm0.283"
71/2.3 in. 7.7mm0.303"
81/2.33 in. 7.7mm0.303"
91/2 in. 8mm0.315"
101/1.9 in. 8.933mm0.352"
111/1.8 in. 8.933mm0.352"
121/1.7 in. 9.5mm0.374"
132/3 in. 11mm0.433"
141/1.2 in. 12.778mm0.503"
151 in. 16mm0.629"
161/1.1 in. 17.475mm0.688"



Digital Magnification Data Sheet
Image Sensor SizeImage Sensor Diagonal sizeMonitor
Screen Size (24in)
Digital Zoom Function
1/3 in. 6mm101.6
1. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size



Microscope Optical and Digital Magnifications Data Sheet
ObjectiveCouplerCameraMonitorVideo Microscope Optical MagnificationsDigital Zoom FunctionTotal MagnificationField of View (mm)
PNMagnificationPNMagnification Image Sensor SizeImage Sensor Diagonal sizeScreen Size
MT060332415XMZ370161310.5X1/3 in. 6mm24in1.5-12.5X101.6152.4-1270X0.48-4mm
MT0603334110XMZ370161310.5X1/3 in. 6mm24in3-25X101.6304.8-2540X0.24-2mm
MT0603344120XMZ370161310.5X1/3 in. 6mm24in6-50X101.6609.6-5080X0.12-1mm
1. Video Microscope Optical Magnifications=Objective Optical Magnification * Body Magnification * Coupler Magnification
2. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size
3. Total Magnification= Video Microscope Optical Magnifications * (Screen Size * 25.4) / Image Sensor Diagonal size
4. Field of View (mm)= Image Sensor Diagonal size / Video Microscope Optical Magnifications

More Info

Contains  
Parts Including
PictureP/NProduct Name
ST0204110276mm Fine Focus Track Stand
MT060332415X Infinity-Corrected Super-Long Working Distance Plan Apochromatic Objective
MT0603334110X Infinity-Corrected Super-Long Working Distance Plan Apochromatic Objective
MT0603344120X Infinity-Corrected Super-Long Working Distance Plan Apochromatic Objective
SA0208121040/76mm Donut
MZ37011114Video Zoom Body with Nosepiece and Coaxial Illuminator
Packing  
Packaging TypeCarton Packaging
Packaging MaterialCorrugated Carton
Packaging Dimensions(1)38x36x19cm (14.961x14.173x7.480″)
Packaging Dimensions(2)10.5x5.5x13cm (4.133x2.165x5.118″)
Packaging Dimensions(3)12.5x10.5x8cm (4.921x4.134x3.150″)
Packaging Dimensions(4)15.2x15.2x15.2cm (6x6x6″)
Packaging Dimensions(5)15.2x15.2x15.2cm (6x6x6″)
Packaging Dimensions(6)15.2x15.2x15.2cm (6x6x6″)
Inner Packing MaterialPlastic Bag
Ancillary Packaging MaterialsExpanded Polystyrene
Gross Weight6.30kg (13.89lbs)
Minimum Packaging Quantity1pc
Transportation CartonCarton Packaging
Transportation Carton MaterialCorrugated Carton
Transportation Carton Dimensions(1)38x36x19cm (14.961x14.173x7.480″)
Transportation Carton Dimensions(2)10.5x5.5x13cm (4.133x2.165x5.118″)
Transportation Carton Dimensions(3)12.5x10.5x8cm (4.921x4.134x3.150″)
Transportation Carton Dimensions(4)15.2x15.2x15.2cm (6x6x6″)
Transportation Carton Dimensions(5)15.2x15.2x15.2cm (6x6x6″)
Transportation Carton Dimensions(6)15.2x15.2x15.2cm (6x6x6″)
Total Gross Weight of Transportation(kilogram)6.30
Total Gross Weight of Transportation(pound)13.89
Quantity of One Transportation Carton6pc

Related Products