3.44X/6.25X/10.94X/18.75X/34.38X 0-90° Trinocular Parallel Multiple Power Microscope Body SM51031151

SKU:
SM51031151
Warranty:
5/1 Years
Condition:
New
  • 3.44X/6.25X/10.94X/18.75X/34.38X 0-90° Trinocular Parallel Multiple Power Microscope Body SM51031151
  • 3.44X/6.25X/10.94X/18.75X/34.38X 0-90° Trinocular Parallel Multiple Power Microscope Body SM51031151
$2,872.90
& Free shipping * Contiguous USA Only
In Stock
Other Shipping Options
Quick Overview
Infinite. Total Magnification: 3.44X/6.25X/10.94X/18.75X/34.38X. 12.5X Eyepiece. 0.5X Infinity Achromatic Objective. Standard Coupler: 0.5X. Body Mounting Size for Stand: Dia. 76mm. Eye Tube Angle: 0-90°. Eyepiece Field of View: Dia. 18mm.


SM51031151 0-90° Trinocular Parallel Multiple Power Microscope Body
Optical System Specifications
Optical SystemInfinite
System Optical Magnification3.44X/6.25X/10.94X/18.75X/34.38X
Trinocular Optical Magnification0.275X/0.5X/ 0.875X/1.5X/2.75X
Total Magnification3.44X/6.25X/10.94X/18.75X/34.38X
Standard Eyepiece12.5X Eyepiece
Standard Objective0.5X Infinity Achromatic Objective
Standard Coupler0.5X
System Field of View Dia. 6.55-65.45mm
System Working Distance200mm
Stereo Binocular Head
0-90° Stereo Binocular Head
Eye Tube Optical SystemInfinite
Eye Tube TypeFor Stereo Microscope
Eye Tube Adjustment ModeSiedentopf
Eye Tube Angle0-90°
Erect/Inverted ImageErect image
Eye Tube Rotatable360° Degree Rotatable
Interpupillary Adjustment45-90mm
Eye Tube Inner Diameter Dia. 30mm
Eye Tube Diopter Adjustable±5°
Eye Tube Fixing ModeLocking Screw
Eye Tube Size for Scope Body/Carrier Dia. 53mm
Surface TreatmentSpray Paint
MaterialMetal
ColorWhite
Net Weight1.27kg (2.80lbs)
Applied FieldFor SM5103 Series Parallel Multiple Power Stereo Microscope
Eyepiece
12.5X Eyepiece (Pair Dia. 30/FN18)
Eyepiece TypeStandard Eyepiece
Eyepiece Optical Magnification12.5X
Plan EyepiecePlan Eyepiece
Eyepiece Size for Eye Tube Dia. 30mm
Eyepiece Field of View Dia. 18mm
Eyepoint TypeHigh Eyepoint Eyepiece
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack
Net Weight0.12kg (0.26lbs)
Stereo Objective
0.5X Infinity Achromatic Objective
Objective Optical SystemInfinite
Objective Optical Magnification0.5X
Objective TypeAchromatic Objective
Objective Working Distance200mm
Objective Screw ThreadM50x0.75mm
Objective Outer Diameter Dia. 56mm
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack
Net Weight0.07kg (0.15lbs)
Applied FieldFor SM5103 Series Parallel Multiple Power Stereo Microscope
Stereo Image Port
50/50 True-Trinocular Image Port
Image Port Switch Mode50/50 True-Trinocular
Surface TreatmentSpray Paint
MaterialMetal
ColorWhite
Net Weight0.47kg (1.04lbs)
Applied FieldFor SM5103 Series Parallel Multiple Power Stereo Microscope
Parallel Multiple Power Body
Parallel Multiple Power Body
Body Optical SystemInfinite
Body Magnification0.55X/1X/1.75X/3X/5.5X
Zoom Operating ModeWith Two Horizontal Knobs
Body Mounting Size for Stand Dia. 76mm
Body Mount Type for Eye TubeFastening Screw
Body Mounting Size for Eye Tube Dia. 62mm
Objective Screw ThreadM50x0.75mm
Surface TreatmentSpray Paint
MaterialMetal
ColorWhite
Net Weight0.50kg (1.10lbs)
Coupler/C-mount Adapter
0.5X Coupler
Coupler Mount Type for TrinocularFastening Screw
Coupler Mount Size for Trinocular Dia. 36mm
Coupler for Microscope TypeStereo Compatible
Coupler Magnification0.5X
For Camera Sensor SizeUnder 1/2 in.
C/CS-Mount CouplerC-Mount
Surface TreatmentElectroplating Black
MaterialAluminum
ColorBlack
Net Weight0.13kg (0.29lbs)
Applied FieldFor SM5103 Series Parallel Multiple Power Stereo Microscope
Other Parameters
Surface TreatmentSpray Paint
MaterialMetal
ColorWhite
Net Weight2.44kg (5.38lbs)

 


Technical Info

Instructions
InfiniteClose Λ
Microscopes and components have two types of optical path design structures.
One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope.
Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required.
The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects.

The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough.
Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective.
System Optical MagnificationClose Λ
The magnification of the objective lens refers to the lateral magnification, it is the ratio of the image to the real size after the original image is magnified by the instrument. This multiple refers to the length or width of the magnified object.
System optical magnification is the product of the eyepiece and the objective lens (objective lens zoom set) of the optical imaging part within the system.
Optical magnification = eyepiece multiple X objective lens/objective lens set

The maximum optical magnification of the microscope depends on the wavelength of the light to which the object is illuminated. The size of the object that can be observed must be greater than the wavelength of the light. Otherwise, the light cannot be reflected or transmitted, or recognized by the human eye. The shortest wavelength of ultraviolet light is 0.2 microns, so the resolution of the optical microscope in the visible range does not exceed 0.2 microns, or 200 nanometers. This size is converted to the magnification of the microscope, and it is the optical magnification of 2000X. Usually, the compound microscope can achieve 100X objective lens, the eyepiece is 20X, and the magnification can reach 2000X. If it is bigger, it will be called "invalid magnification", that is, the image is large, but the resolution is no longer increased, and no more details and information can be seen.
Trinocular Optical MagnificationClose Λ
When the instrument is conducting electronic image magnification and observation through a camera or the like, the optically magnified portion may not be the optical path that passes through the "eyepiece-objective lens" of the instrument, at this time, the calculation method of the magnification is related to the third-party photo eyepiece passed.
The trinocular optical magnification is equal to the multiplier product of objective lens (objective lens set) and the photo eyepiece

Trinocular optical magnification = objective lens X photo eyepiece
Total MagnificationClose Λ
Total magnification is the magnification of the observed object finally obtained by the instrument. This magnification is often the product of the optical magnification and the electronic magnification.
When it is only optically magnified, the total magnification will be the optical magnification.

Total magnification = optical magnification X electronic magnification
Total magnification = (objective X photo eyepiece) X (display size / camera sensor target )
System Field of ViewClose Λ
Field of View, is also called FOV.
The field of view, or FOV, refers to the size of the object plane (i.e., the plane of the point of the observed object perpendicular to the optical axis), or of its conjugate plane (i.e., object to primary image distance), represented by a line value.
System field of view is the size of the actual diameter of the image of the terminal display device of the instrument, such as the size of the image in the eyepiece or in the display.

Field of view number refers to the diameter of the field diaphragm of the objective lens, or the diameter of the image plane formed by the field diaphragm.
Field of view number of objective lens = field of view number of eyepiece / (objective magnification / mechanical tube length)

Large field of view makes it easy to observe the full view and more range of the observed object, but the field of view (FOV) is inversely proportional to the magnification and inversely proportional to the resolution, that is, the larger the field of view, the smaller the magnification, and also the lower the resolution of the object to be observed.
There are usually two ways to increase the field of view, one is to replace with an objective lens of a smaller multiple, or to replace with an eyepiece of a smaller multiple.
System Working DistanceClose Λ
Working distance, also referred to as WD, is usually the vertical distance from the foremost surface end of the objective lens of the microscope to the surface of the observed object.
When the working distance or WD is large, the space between the objective lens and the object to be observed is also large, which can facilitate operation and the use of corresponding lighting conditions.
In general, system working distance is the working distance of the objective lens. When some other equipment, such as a light source etc., is used below the objective lens, the working distance (i.e., space) will become smaller.

Working distance or WD is related to the design of the working distance of the objective lens. Generally speaking, the bigger the magnification of the objective lens, the smaller the working distance. Conversely, the smaller the magnification of the objective lens, the greater the working distance.
When it is necessary to change the working distance requirement, it can be realized by changing the magnification of the objective lens.
SiedentopfClose Λ
For siedentopf eyetube, when changing the interpupillary distance, it requires two hands pushing or pulling the two eyetubes left and right simultaneously, and the two eyepiece tubes or eyetubes will change their position at the same time.
Eye Tube AngleClose Λ
Usually the Microscope Eyetube is 45°, some is 30°, Tiltable Eyetube Angle design of a microscope is also known as the ergonomics microscope.
0-30° or 0-45° is an ergonomic design. When the mechanical tube length / focal length of the tube of the microscope is relatively big, the microscope is relatively high, and the user's height or the seat of the work desk is not suitable, long-term use of microscope may cause sitting discomfort.
Eyepiece tube with variable angle can freely adjust the angle without lowering the head. Especially when it is close to 0 degree and the human eye is close to horizontal viewing, long-time or long-term use can avoid fatigue damage to the cervical vertebra.
Erect/Inverted ImageClose Λ
After imaging through a set of objective lenses, the object observed and the image seen by the human eye is inverted. When the observed object is manipulated, move the specimen or object, the image will move in the opposite direction in the field of view. Most of the biological microscopes are reversed-phase designs.
When needing to operate works with accurate direction, it is necessary to design it into a forward microscope. Generally stereo microscopes and metallurgical microscopes are all of erect image design.
When observing through the camera and display, the erect and inverted image can be changed by the orientation of the camera.
360° Degree RotatableClose Λ
The eyepiece of the microscope can have different viewing or observing directions. When the position of the microscope is uncomfortable, the direction of the eyepiece tube of the microscope can be adjusted, to facilitate observation and operation.

Placement method of different viewing angles of the microscope:
General direction: the support column is behind the object to be observed
Reverse direction: the support column is in front of the object to be observed
Lateral direction: the support column is on the side of the object to be observed
Rotating eyepiece tube, different microscopes may have different methods, for some, the direction is confirmed when installing the eyepiece tube of the microscope, for some, by rotating the body of the microscope, and for some, by rotating the support member on the support or holder of the microscope.
Interpupillary AdjustmentClose Λ
The distance between the two pupils of the human eye is different. When the image of exit pupil of the two eyepieces of the microscope are not aligned with the entry pupil of the eye, the two eyes will see different images, which can cause discomfort.
Adjust the distance between the two eyepieces, to accommodate or adapt to the pupil distance of the observer's eyes. The adjustment range is generally between 55-75mm.
Eye Tube Diopter AdjustableClose Λ
For most people, their two eyes, the left and the right, have different vision; for the eyepiece tube, the eyepoint height of the eyepiece can be adjusted to compensate for the difference in vision between the two eyes, so that the imaging in the two eyes is clear and consistent.
The range of adjustment of the eyepiece tube is generally diopter plus or minus 5 degrees, and the maximum differential value between the two eyepieces can reach 10 degrees.

Monocular adjustable and binocular adjustable: some microscopes have one eyepiece tube adjustable, and some have two eyepiece tubes adjustable. First, adjust one eyepiece tube to the 0 degree position, adjust the microscope focusing knob, and find the clear image of this eyepiece (when the monocular adjustable is used, first adjust the focusing knob to make this eyepiece image clear), then adjust the image of another eyepiece tube (do not adjust the focusing knob again at this time), repeatedly adjust to find the clear position, then the two images are clear at the same time. For this particular user, do not adjust this device anymore in the future.
As some microscopes do not have the vision adjustment mechanism for the eyepiece tube, the vision of the two eyes are adjusted through the eyepiece adjustable.
Eyepiece Optical MagnificationClose Λ
Eyepiece optical magnification is the visual magnification of the virtual image after initial imaging through the eyepiece. When the human eye observes through the eyepiece, the ratio of the tangent of the angle of view of the image and the tangent of the angle of view of the human eye when viewing or observing the object directly at the reference viewing distance is usually calculated according to 250 mm/focal length of eyepiece.
The standard configuration of a general microscope is a 10X eyepiece.
Usually, the magnification of the eyepiece of compound microscope is 5X, 8X, 10X, 12.5X, 16X, 20X.
As stereo microscope has a low total magnification, its eyepiece magnification generally does not use 5X, but can achieve 25X, 30X and other much bigger magnification.
Eyepiece Field of ViewClose Λ
The eyepiece field of view is the diameter of the field diaphragm of the eyepiece, or the diameter of the image plane of the field diaphragm imaged by the field diaphragm.
The diameter of a large field of view can increase the viewing range, and see more detail in the field of view. However, if the field of view is too large, the spherical aberration and distortion around the eyepiece will increase, and the stray light around the field of view will affect the imaging effect.
Eyepoint TypeClose Λ
Eye point refers to the axial distance between the upper end of the metal frame of the eyepiece and the exit of pupil.
The exit of pupil distance of high eyepoint eyepiece is farther than that of the eye lens of the ordinary eyepiece. When this distance is greater than or equal to 18mm, it is a high eyepoint eyepiece. When observing, one does not need to be too close to the eyepiece lens, making it comfort to observe, and it can also be viewed with glasses. Generally, there is a glasses logo on the eyepiece, indicating that it is a high eyepoint eyepiece.
Objective Optical MagnificationClose Λ
The finite objective is the lateral magnification of the primary image formed by the objective at a prescribed distance.

Infinite objective is the lateral magnification of the real image produced by the combination of the objective and the tube lens.
Infinite objective magnification = tube lens focal length (mm) / objective focal length (mm)

Lateral magnification of the image, that is, the ratio of the size of the image to the size of the object.
The larger the magnification of the objective, the higher the resolution, the smaller the corresponding field of view, and the shorter the working distance.
Objective TypeClose Λ
In the case of polychromatic light imaging, the aberration caused by the light of different wavelengths becomes chromatic aberration. Achromatic aberration is to correct the axial chromatic aberration to the two line spectra (C line, F line); apochromatic aberration is to correct the three line spectra (C line, D line, F line).
The objective is designed according to the achromaticity and the flatness of the field of view. It can be divided into the following categories.

Achromatic objective: achromatic objective has corrected the chromatic aberration, spherical aberration, and comatic aberration. The chromatic portion of the achromatic objective has corrected only red and green, so when using achromatic objective, yellow-green filters are often used to reduce aberrations. The aberration of the achromatic objective in the center of the field of view is basically corrected, and as its structure is simple, the cost is low, it is commonly used in a microscope.

Semi-plan achromatic objective: in addition to meeting the requirements of achromatic objective, the curvature of field and astigmatism of the objective should also be properly corrected.
Plan achromatic objective: in addition to meeting the requirements of achromatic objectives, the curvature of field and astigmatism of the objective should also be well corrected. The plan objective provides a very good correction of the image plane curvature in the field of view of the objective, making the entire field of view smooth and easy to observe, especially in measurement it has achieved a more accurate effect.

Plan semi-apochromatic objective: in addition to meeting the requirements of plan achromatic objective, it is necessary to well correct the secondary spectrum of the objective (the axial chromatic aberration of the C line and the F line).
Plan apochromatic objective: in addition to meeting the requirements of plan achromatic objective, it is necessary to very well correct the tertiary spectrum of the objective (the axial chromatic aberration of the C line, the D line and the F line) and spherochromatic aberration. The apochromatic aberration has corrected the chromatic aberration in the range of red, green and purple (basically the entire visible light), and there is basically no limitation on the imaging effect of the light source. Generally, the apochromatic aberration is used in a high magnification objective.

Objective Working DistanceClose Λ
The objective working distance is the vertical distance from the foremost surface end of the objective of the microscope to the object surface to be observed.
Generally, the greater the magnification, the higher the resolution of the objective, and the smaller the working distance, the smaller the field of view. Conversely, the smaller the magnification, the lower the resolution of the objective, and the greater the working distance, and greater the field of view.
High-magnification objectives (such as 80X and 100X objectives) have a very short working distance. Be very careful when focusing for observation. Generally, it is after the objective is in position, the axial limit protection is locked, then the objective is moved away from the direction of the observed object.
The relatively greater working distance leaves a relatively large space between the objective and the object to be observed. It is suitable for under microscope operation, and it is also easier to use more illumination methods. The defect is that it may reduce the numerical aperture of the objective, thereby reducing the resolution.
Objective Screw ThreadClose Λ
For microscopes of different manufacturers and different models, the thread size of their objectives may also be different.
In general, the objective threads are available in two standard sizes, allowing similar objectives between different manufacturers to be used interchangeably.
One is the British system: RMS type objective thread: 4/5in X 1/36in,
One is metric: M25 X 0.75mm thread.
Image Port Switch ModeClose Λ
The third eyepiece splitting in the trinocular microscope is to borrow one of the two sets of eyepiece optical paths as the photographic light path. The beam split prism or beam splitter can reflect part of the image light to the eyepiece, and part passes through to the third eyepiece photographic light path, such a trinocular microscope is called trinocular simultaneous imaging microscope, or true-trinocular.
The beam split prism or beam splitter of the trinocular simultaneous imaging microscope or true-trinocular often has different splitting modes, such as 20/80 and 50/50, etc. Usually, the former is the luminous flux ratio of the eyepiece optical path, and the latter is the luminous flux ratio of the photographic optical path.

The advantage of true-trinocular is that, the real three optical paths can be imaged at the same time, and are not affected by the simultaneous use of the eyepiece observation and the photographic optical path (display). The disadvantage is that, because of the reason of the splitting, the image light of the photography is only a part. In theory, the image effect will be affected, and the effect is more obvious in the binocular eyepiece observation. If viewed closely, one will find that the eyepiece of the light path is relatively dark. However, in the current optical design and materials, the impact on the actual work is not very big, especially in the observation of low magnification objective lens, it has basically no effect at all, and therefore used by many people.
With Two Horizontal KnobsClose Λ
When microscope body changes the magnification, it is realized by adjusting the horizontally placed zoom knob. Because the knob is relatively small, it is therefore easier to zoom and the image is stable.
For most of the dual stereo microscopes, magnification is realized by adjusting the zoom drum or nosepiece below. When the nosepiece is relatively big, frequent operation is more laborious. Magnifying while observing, the microscope may shake, thereby causing eye discomfort for observation.
Using zoom drum or nosepiece type microscope, if there is a ring light under the microscope, the ring light carries the wire, and when magnification conversion is often required, the ring light and the wire will swing along with the magnification, which makes the operation inconvenient. This situation will not occur to zoom with two horizontal knobs.
Coupler/C-mount AdapterClose Λ
Coupler/C-mount adapter is an adapter commonly used for connection between the C-adapter camera (industrial camera) and a microscope.
Coupler for Microscope TypeClose Λ
Different coupler/C-mount-adapters are suitable for different microscopes. For some, some adapter accessories need to be replaced. See the applicable range of each coupler/C-mount-adapter for details.
Coupler MagnificationClose Λ
Coupler magnification refers to the line field magnification of the coupler/C-mount-adapter. With different magnifications of the adapter lens, images of different magnifications and fields of view can be obtained. The size of the image field of view is related to the sensor size and the coupler/C-mount-adapter magnification.

Camera image field of view (mm) = sensor diagonal / coupler/C-mount-adapter magnification.

For example: 1/2 inch sensor size, 0.5X coupler/C-mount-adapter coupler, field of view FOV (mm) = 8mm / 0.5 = 16mm.
The field of view number of the microscope 10X eyepiece is usually designed to be 18, 20, 22, 23mm, less than 1 inch (25.4mm). Since most commonly used camera sensor sizes are 1/3 and 1/2 inches, this makes the image field of view on the display always smaller than the field of view of the eyepiece for observation, and the visual perception becomes inconsistent when simultaneously viewed on both the eyepiece and the display. If it is changed to a 0.5X coupler/C-mount-adapter, the microscope image magnification is reduced by 1/2 and the field of view is doubled, then the image captured by the camera will be close to the range observed in the eyepiece.
Some adapters are designed without a lens, and their optical magnification is considered 1X.
For Camera Sensor SizeClose Λ
For the size of the lens field of view of the coupler/C-mount-adapter, in the design process, the size of the camera sensor imaging target should be considered. When the field of view of the lens is smaller than the target plane of the camera, “black border” and “dark corner” will appear.
The general microscope coupler/C-mount adapters are generally designed for the 1/2" camera targets. When a camera of 2/3 or larger target is used, the “dark corner” phenomenon will appear in the field of view. Especially, at present, DSLR cameras generally use large target plane design (1 inch full field of view), when used for microscopic photographing, the general DSLR camera coupler/C-mount adapter will have “black border”.
Generally, the “dark corner” that appears on the field of view is often that the center of the microscope and the camera are not aligned. Adjust the position of the screw on the camera adapter, or turn the camera adapter to adjust or change the effect.
C/CS-Mount CouplerClose Λ
At present, the coupler/C-mount adapter generally adopts the C/CS-Mount adapter to match with the industrial camera. For details, please refer to "Camera Lens Mount".
PackagingClose Λ
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection.
For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem.

 


Optical Data

 


Microscope Optical Data Sheet
P/NObjectiveObjective Working DistanceEyepiece
EY02012112   (5X  Dia. 20mm)SM51033311   (12.5X  Dia. 18mm)
MagnificationField of View(mm)MagnificationField of View(mm)
SM510342110.5X200mm2.5X40mm6.25X36mm
1. Magnification=Objective Optical Magnification * Body Magnification * Eyepiece Optical Magnification
2. Field of View=Eyepiece Field of View /(Objective Optical Magnification*Body Magnification)
3. The Darker background items are Standard items, the white background items are optional items.



Video Microscope Optical Data Sheet
P/NObjective Coupler
SM51036131  (0.5X)
Magnification
SM510342110.5X0.25X
1. Magnification=Objective Optical Magnification * Body Magnification * Coupler Magnification



Camera Image Sensor Specifications
No.Camera Image Sensor SizeCamera image Sensor Diagonal
(mm)(inch)
11/4 in. 4mm0.157"
21/3 in. 6mm0.236"
31/2.8 in. 6.592mm0.260"
41/2.86 in. 6.592mm0.260"
51/2.7 in. 6.718mm0.264"
61/2.5 in. 7.182mm0.283"
71/2.3 in. 7.7mm0.303"
81/2.33 in. 7.7mm0.303"
91/2 in. 8mm0.315"
101/1.9 in. 8.933mm0.352"
111/1.8 in. 8.933mm0.352"
121/1.7 in. 9.5mm0.374"
132/3 in. 11mm0.433"
141/1.2 in. 12.778mm0.503"
151 in. 16mm0.629"
161/1.1 in. 17.475mm0.688"



Digital Magnification Data Sheet
Image Sensor SizeImage Sensor Diagonal sizeMonitor
Screen Size (24in)
Digital Zoom Function
1/3 in. 6mm101.6
1. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size



Microscope Optical and Digital Magnifications Data Sheet
ObjectiveCouplerCameraMonitorVideo Microscope Optical MagnificationsDigital Zoom FunctionTotal MagnificationField of View (mm)
PNMagnificationPNMagnification Image Sensor SizeImage Sensor Diagonal sizeScreen Size
SM510342110.5XSM510361310.5X1/3 in. 6mm24in0.25X101.625.4X24mm
1. Video Microscope Optical Magnifications=Objective Optical Magnification * Body Magnification * Coupler Magnification
2. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size
3. Total Magnification= Video Microscope Optical Magnifications * (Screen Size * 25.4) / Image Sensor Diagonal size
4. Field of View (mm)= Image Sensor Diagonal size / Video Microscope Optical Magnifications

Optional Accessories For This Product

More Info

Contains  
Parts Including
PictureP/NProduct Name
SM5103512150/50 True-Trinocular Image Port
SM510361310.5X Coupler
SM510325210-90° Stereo Binocular Head
SM51031101Parallel Multiple Power Body
SM510342110.5X Infinity Achromatic Objective
Packing  
Packaging TypeCarton Packaging
Packaging MaterialCorrugated Carton
Packaging Dimensions(1)31x22.5x36.5cm (12.205x8.858x14.370″)
Inner Packing MaterialPlastic Bag
Ancillary Packaging MaterialsStyrofoam
Gross Weight3.00kg (6.61lbs)
Minimum Packaging Quantity1pc
Transportation CartonCarton Packaging
Transportation Carton MaterialCorrugated Carton
Transportation Carton Dimensions(1)31x22.5x36.5cm (12.205x8.858x14.370″)
Total Gross Weight of Transportation(kilogram)6.61
Total Gross Weight of Transportation(pound)6.61
Quantity of One Transportation Carton1pc

Related Products