0.58-7X Zoom Ratio 1:12 Navitar 12X Zoom, 3 mm Fine Focus w/Coax Navitar-1-50503-IR

SKU:
Navitar-1-50503-IR
Condition:
New
  • 0.58-7X Zoom Ratio 1:12 Navitar 12X Zoom, 3 mm Fine Focus w/Coax Navitar-1-50503-IR
  • 0.58-7X Zoom Ratio 1:12 Navitar 12X Zoom, 3 mm Fine Focus w/Coax Navitar-1-50503-IR
  • 0.58-7X Zoom Ratio 1:12 Navitar 12X Zoom, 3 mm Fine Focus w/Coax Navitar-1-50503-IR
$5,600.00
& Free shipping * Contiguous USA Only
Pre-Order. Place your order and we’ll email you once we have an estimated delivery date.
Other Shipping Options
Quick Overview
Infinite. Body Magnification: 0.58-7X. Zoom Range: 0.58-7X. Zoom Ratio: 1:12. Body Mounting Size for Stand: Dia. 45.3mm. Vertical Illuminator Adapter Size: Dia. 8mm.


Navitar-1-50503-IR Navitar 12X Zoom, 3 mm Fine Focus w/Coax
Zoom Lens Body
Body Optical SystemInfinite
Body Magnification0.58-7X
Zoom Range0.58-7X
Zoom Ratio1:12
Zoom Operating ModeWith the Nosepiece
Body Mounting Size for Stand Dia. 45.3mm
Body Mount Type for CouplerFastening Screw
Body Mount Size for Coupler Dia. 33.3mm
Illuminator Mount Type for ObjectiveThread Screw
Illuminator Mount Size for Objective1.093-32T
Co-Axial Illuminator with FocusYes
Vertical Illuminator Adapter Size Dia. 8mm
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack

 


Technical Info

Instructions
Scope Body PartsClose Λ
Nosepiece, also known as revolving nosepiece, can be mounted with several objective, and one of which in turn can be switched to the microscope optical axis for use.
Nosepiece has different configurations, namely, single, triple, quadruple, and quintuple. Each objective has a ball buckle at its position to ensure that the objective is in the exact fixed position of the optical axis. Since any one set of objectives has the same parfocal distance, so when the objective is switched between high and low magnifications for observation, it is almost unnecessary to perform again the focusing operation.
Nosepiece can be divided into two types, namely, inward nosepiece and outward nosepiece, depending on the positional direction. After switching, the tube of inward nosepiece is inclined to the side of the microscope body, which can save people's operating space and prevents it from hitting the lens.

In general, after the objective is mounted onto the nosepiece, no special coaxial processing is required. If necessary, remove the nosepiece, and adjust the position of the end point screw on the dovetail rail behind the nosepiece. If the objective is still off-axis, adjust the optical axis of the condenser to match the optical axis center of the objective.
In the use of microscope, if one set of objective cannot be parfocal, there are many reasons for the problem, but it may be that the nosepiece or the set of objective itself cannot guarantee parfocalness due to problems of processing precision. In this case, after confirming that the high and low magnifications of the objectives at both ends are in focus, adjust the objective of the middle magnification, and usually try to add a thin "shims" to correct.
For normal switching of the objective, it is necessary to push the nosepiece instead of pushing and pulling the objective to prevent the objective and the nosepiece from deviating from the optical axis or loosening, so as to avoid image out of focus or damage.
InfiniteClose Λ
Microscopes and components have two types of optical path design structures.
One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope.
Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required.
The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects.

The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough.
Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective.
Zoom RangeClose Λ
Zoom in zoom microscope means to obtain different magnifications by changing the focal length of the objective lens within a certain range through adjustment of some lens or lens set while not changing the position of the object plane (that is, the plane of the point of the observed object perpendicular to the optical axis) and the image plane (that is, the plane of the image imaging focus and perpendicular to the optical axis) of the microscope.
Zoom range refers to the range in which the magnification is from low to high. In the zoom range of the microscope, there is no need to adjust the microscope knob for focusing, and ensure that the image is always clear during the entire zoom process.
The larger the zoom range, the stronger the adaptability of the range for microscope observation, but the image effects at both ends of the low and high magnification should be taken into consideration, the larger the zoom range, the more difficult to design and manufacture, and the higher the cost will be.
Zoom RatioClose Λ
Zoom ratio is the ratio of the maximum magnification / the minimum magnification. Expressed as 1: (ratio of maximum magnification / minimum magnification). If the maximum magnification is 4.5X, the minimum magnification is 0.7X, then the zoom ratio = 4.5 / 0.7 = 6.4, the zoom ratio will be 1:6.4.
Zoom ratio is obtained by the intermediate magnification group of the microscope. When the magnification is increased or decreased by using other objective lenses, the zoom ratio does not change accordingly.
With the NosepieceClose Λ
When the microscope body changes the magnification, it is realized by adjusting the zoom drum or nosepiece. Generally, the lower case of the microscope is used as the zoom drum or nosepiece. When magnification conversion is required, it can be realized by turning the zoom drum or nosepiece.
PackagingClose Λ
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection.
For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem.

More Info

Packing  
Packaging TypeCarton Packaging
Packaging MaterialCorrugated Carton
Packaging Dimensions(1)29x19.5x14.5cm (11.417x7.677x5.709″)
Inner Packing MaterialPlastic Bag
Ancillary Packaging MaterialsExpanded Polystyrene
Minimum Packaging Quantity1pc
Transportation CartonCarton Packaging
Transportation Carton MaterialCorrugated Carton
Transportation Carton Dimensions(1)29x19.5x14.5cm (11.417x7.677x5.709″)
Quantity of One Transportation Carton1pc

Related Products