1X/3X 4:3 Independent Use Red Laser Objective Working Distance 100mm Objective Working Distance 97.3mm 8″ Video Microscope Body MV05011102

SKU:
MV05011102
Warranty:
5/1 Years
Certificate:
ISO9001, ISO13485, ISO14001, RoHS
Condition:
New
  • 1X/3X 4:3 Independent Use Red Laser Objective Working Distance 100mm Objective Working Distance 97.3mm 8″ Video Microscope Body MV05011102
  • 1X/3X 4:3 Independent Use Red Laser Objective Working Distance 100mm Objective Working Distance 97.3mm 8″ Video Microscope Body MV05011102
  • 1X/3X 4:3 Independent Use Red Laser Objective Working Distance 100mm Objective Working Distance 97.3mm 8″ Video Microscope Body MV05011102
  • 1X/3X 4:3 Independent Use Red Laser Objective Working Distance 100mm Objective Working Distance 97.3mm 8″ Video Microscope Body MV05011102
  • 1X/3X 4:3 Independent Use Red Laser Objective Working Distance 100mm Objective Working Distance 97.3mm 8″ Video Microscope Body MV05011102
$1,283.98
& Free shipping * Contiguous USA Only
In Stock
Other Shipping Options
Quick Overview
Finite. Body Magnification: 1X/3X. Body Mounting Size for Stand: Dia. 76mm. Infinite. 1X. Semi-Plan Achromatic Objective. Objective Working Distance: 97.3mm. Objective Working Distance: 100mm. CCD. Image Sensor Size: 1/3 in. C-Video. Screen Size: 8in. 4:3. Input Voltage: DC 12V. Power Cord Connector Type: USA 3 Pins. Pointer Light Waves Type: Laser. Pointer Light Color: Red. Pointer Light Wavelength: 650nm. Pointer Light Shape: Point. For MZ0201 Series Microscope.


MV05011102 8 in. Video Microscope Body
Binocular Dual Power Body
Body Optical SystemFinite
Body Magnification1X/3X
Power Change ModeWith the Nosepiece
Body Mounting Size for Stand Dia. 76mm
Objective Working Distance100mm
Image SensorCCD
Image Sensor Size1/3 in.
Camera Resolution480 TV Lines
Camera Signal Output PortC-Video
Camera Video Signal FormatPAL
White BalanceManual/Auto
Exposure ControlAuto
LanguageEnglish/Chinese (Simplified)
Screen Size8in
Screen Aspect Ratio4:3
Input VoltageDC 12V
Power Cord Connector TypeUSA 3 Pins
Surface TreatmentSpray Paint
MaterialMetal
ColorWhite
Net Weight1.82kg (4.01lbs)
Monocular Video Microscope Objective
1X Objective
Objective Optical SystemInfinite
Objective Optical Magnification1X
Objective TypeSemi-Plan Achromatic Objective
Objective Working Distance97.3mm
Objective Screw ThreadM24x0.75mm
Objective Outer Diameter Dia. 30mm
Barlow LensYes
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack
Net Weight0.02kg (0.04lbs)
Applied FieldFor MZ0201 Series Microscope
Laser Pointer
Pointer TypeIndependent Use
Mounting Position of PointerMounted on Microscope Stand
Pointer Light Waves TypeLaser
Pointer Light ColorRed
Pointer Light Wavelength650nm
Pointer Light ShapePoint
Pointer Mounting TypeM4/M5 Fastening Screw
Surface TreatmentPolished
MaterialPlastic
ColorBlack

 


Technical Info

Instructions
Binocular Dual Power BodyClose Λ
Binocular dual power body refers to the main body of a stereo microscope with two objective lens magnifications. When performing magnification-shifting, two different magnifications can be obtained.
When the body needs other different magnifications, it can also be solved by adding or changing the objective lens/auxiliary objective lens, or by changing the eyepieces of different magnifications.
Dual power stereo microscope mostly uses 10X, 20X, 30X, 40X combinations of two kinds of magnifications. When the magnification is greater than 40X, the image is close to the plane effect, and the stereoscopic effect is relatively poor.
Dual power stereo microscope has a simple structure, high reliability and low cost, it is a kind of stereo microscope that can satisfy stereo image applications.
FiniteClose Λ
Microscopes and components have two types of optical path design structures.
One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope.
Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required.
The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects.

The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough.
Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective.
With the NosepieceClose Λ
When the microscope body changes the magnification, it is realized by adjusting the zoom drum or nosepiece. Generally, the lower case of the microscope is used as the zoom drum or nosepiece. When magnification conversion is required, it can be realized by turning the zoom drum or nosepiece.
Objective Working DistanceClose Λ
The objective working distance is the vertical distance from the foremost surface end of the objective of the microscope to the object surface to be observed.
Generally, the greater the magnification, the higher the resolution of the objective, and the smaller the working distance, the smaller the field of view. Conversely, the smaller the magnification, the lower the resolution of the objective, and the greater the working distance, and greater the field of view.
High-magnification objectives (such as 80X and 100X objectives) have a very short working distance. Be very careful when focusing for observation. Generally, it is after the objective is in position, the axial limit protection is locked, then the objective is moved away from the direction of the observed object.
The relatively greater working distance leaves a relatively large space between the objective and the object to be observed. It is suitable for under microscope operation, and it is also easier to use more illumination methods. The defect is that it may reduce the numerical aperture of the objective, thereby reducing the resolution.
CCDClose Λ
CCD, charge coupled device.
See CCD and CMOS structure comparison table
Image Sensor SizeClose Λ
The size of the CCD and CMOS image sensors is the size of the photosensitive device. The larger the area of the photosensitive device, the larger the CCD/CMOS area; the more photons are captured, the better the photographic performance; the higher the signal-to-noise ratio, the larger the photosensitive area, and the better the imaging effect.
The size of the image sensor needs to match the size of the microscope's photographic eyepiece; otherwise, black borders or dark corners will appear within the field of view of observation.
Camera ResolutionClose Λ
Resolution of the camera refers to the number of pixels accommodated within unit area of the image sensor of the camera. Image resolution is not represented by area, but by the number of pixels accommodated within the unit length of the rectangular side. The unit of length is generally represented by inch.
Camera Signal Output PortClose Λ
Digital signals output: USB 2.0, USB3.0; 15 Pin VGA; Firewire Port; HDMI; VGA; Camera Link etc.
Analog signal output: BNC; RCA; Y-C etc.
In addition, some cameras store and output images in the form of a memory card. Usually, industrial cameras often have several output modes on one camera for convenience purposes.
Camera Video Signal FormatClose Λ
Camera video signal format usually refers to the video output format of the analog signal: NTSC or PAL
White BalanceClose Λ
White balance is an indicator that describes the precision of white color generated in the image when the three primary colors of red, green and blue are mixed, which accurately reflects the color condition of the subject. There are manual white balance and automatic white balance.
White balance of the camera is to "restore white objects to white color under any light source." The chromatic aberration phenomenon occurred under different light sources is compensated by enhancing the corresponding complementary color. Automatic white balance can generally be used, but under certain conditions if the hue is not ideal, options of other white balance may be selected.
InfiniteClose Λ
Microscopes and components have two types of optical path design structures.
One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope.
Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required.
The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects.

The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough.
Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective.
Objective Optical MagnificationClose Λ
The finite objective is the lateral magnification of the primary image formed by the objective at a prescribed distance.

Infinite objective is the lateral magnification of the real image produced by the combination of the objective and the tube lens.
Infinite objective magnification = tube lens focal length (mm) / objective focal length (mm)

Lateral magnification of the image, that is, the ratio of the size of the image to the size of the object.
The larger the magnification of the objective, the higher the resolution, the smaller the corresponding field of view, and the shorter the working distance.
Objective TypeClose Λ
In the case of polychromatic light imaging, the aberration caused by the light of different wavelengths becomes chromatic aberration. Achromatic aberration is to correct the axial chromatic aberration to the two line spectra (C line, F line); apochromatic aberration is to correct the three line spectra (C line, D line, F line).
The objective is designed according to the achromaticity and the flatness of the field of view. It can be divided into the following categories.

Achromatic objective: achromatic objective has corrected the chromatic aberration, spherical aberration, and comatic aberration. The chromatic portion of the achromatic objective has corrected only red and green, so when using achromatic objective, yellow-green filters are often used to reduce aberrations. The aberration of the achromatic objective in the center of the field of view is basically corrected, and as its structure is simple, the cost is low, it is commonly used in a microscope.

Semi-plan achromatic objective: in addition to meeting the requirements of achromatic objective, the curvature of field and astigmatism of the objective should also be properly corrected.
Plan achromatic objective: in addition to meeting the requirements of achromatic objectives, the curvature of field and astigmatism of the objective should also be well corrected. The plan objective provides a very good correction of the image plane curvature in the field of view of the objective, making the entire field of view smooth and easy to observe, especially in measurement it has achieved a more accurate effect.

Plan semi-apochromatic objective: in addition to meeting the requirements of plan achromatic objective, it is necessary to well correct the secondary spectrum of the objective (the axial chromatic aberration of the C line and the F line).
Plan apochromatic objective: in addition to meeting the requirements of plan achromatic objective, it is necessary to very well correct the tertiary spectrum of the objective (the axial chromatic aberration of the C line, the D line and the F line) and spherochromatic aberration. The apochromatic aberration has corrected the chromatic aberration in the range of red, green and purple (basically the entire visible light), and there is basically no limitation on the imaging effect of the light source. Generally, the apochromatic aberration is used in a high magnification objective.

Objective Screw ThreadClose Λ
For microscopes of different manufacturers and different models, the thread size of their objectives may also be different.
In general, the objective threads are available in two standard sizes, allowing similar objectives between different manufacturers to be used interchangeably.
One is the British system: RMS type objective thread: 4/5in X 1/36in,
One is metric: M25 X 0.75mm thread.
PackagingClose Λ
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection.
For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem.

 


Optical Data

 

Camera Image Sensor Specifications
No.Camera Image Sensor SizeCamera image Sensor Diagonal
(mm)(inch)
11/4 in. 4mm0.157"
21/3 in. 6mm0.236"
31/2.8 in. 6.592mm0.260"
41/2.86 in. 6.592mm0.260"
51/2.7 in. 6.718mm0.264"
61/2.5 in. 7.182mm0.283"
71/2.3 in. 7.7mm0.303"
81/2 in. 8mm0.315"
91/1.9 in. 8.933mm0.352"
101/1.8 in. 8.933mm0.352"



Digital Magnification Data Sheet
Image Sensor SizeImage Sensor Diagonal sizeMonitor
Screen Size (8in)
Digital Zoom Function
1/3 in. 6mm33.9
1. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size



More Info

Contains  
Parts Including
PictureP/NProduct Name
MV02014951Laser Pointer
MZ020144111X Objective
Packing  
Packaging TypeCarton Packaging
Packaging MaterialCorrugated Carton
Packaging Dimensions(1)35x30x22cm (13.780x11.811x8.661″)
Inner Packing MaterialPlastic Bag
Ancillary Packaging MaterialsExpanded Polystyrene
Gross Weight2.64kg (5.84lbs)
Minimum Packaging Quantity1pc
Transportation CartonCarton Packaging
Transportation Carton MaterialCorrugated Carton
Transportation Carton Dimensions(1)35x30x22cm (13.780x11.811x8.661″)
Total Gross Weight of Transportation(kilogram)2.64
Total Gross Weight of Transportation(pound)5.82

Related Products