50W Halogen Brightfield Microscope Vertical Episcopic Illuminator

SKU:
PL04056101
Warranty:
1 Year
Certificate:
ISO9001, ISO13485, ISO14001
Condition:
New
  • 50W Halogen Brightfield Microscope Vertical Episcopic Illuminator
  • 50W Halogen Brightfield Microscope Vertical Episcopic Illuminator
  • 50W Halogen Brightfield Microscope Vertical Episcopic Illuminator
  • 50W Halogen Brightfield Microscope Vertical Episcopic Illuminator
  • 50W Halogen Brightfield Microscope Vertical Episcopic Illuminator
$2,990.98
& Free shipping * Contiguous USA Only
Temporarily out of stock. Place your order and we’ll email you once we have an estimated delivery date.
Other Shipping Options
Quick Overview
Coaxial Reflection Light Type: Bright Field. Halogen Light. Output Power: 50W. For PL0405 Series Microscope.


PL04056101 Vertical Illuminator
Coaxial Reflection Illuminator
Illuminator Mount Type for BodyFastening Screw
Illuminator Mount Size for Body Dia. 50mm
Coaxial Reflection Light TypeBright Field
Coaxial Reflection Illuminator Light Source TypeHalogen Light
Coaxial Reflection Illuminator Input VoltageDC 12V
Coaxial Reflection Illuminator Output Power50W
Lamp House Port Size Dia. 48mm
Aperture DiaphragmAperture Diaphragm Adjustable
Aperture Diaphragm Mounting PositionVertical Illuminator
Field DiaphragmField Diaphragm Adjustable
Field Diaphragm Mounting PositionVertical Illuminator
Filter Switch TypePlug Type
Output Power50W
Surface TreatmentSpray Paint
MaterialMetal
ColorWhite
Net Weight2.48kg (5.47lbs)
Applied FieldFor PL0405 Series Microscope

 


Technical Info

Instructions
IlluminatorClose Λ
The conditions of different illumination of the microscope are a very important parameter. Choosing the correct illumination method can improve the resolution and contrast of the image, which is very important for observing the imaging of different objects.

The wavelength of the light source is the most important factor affecting the resolution of the microscope. The wavelength of the light source must be smaller than the distance between the two points to be observed in order to be distinguished by the human eye. The resolution of the microscope is inversely proportional to the wavelength of the light source. Within the range of the visible light, the violet wavelength is the shortest, providing also the highest resolution. The wavelength of visible light is between 380~780nm, the maximum multiple of optical magnification is 1000-2000X, and the limit resolution of optical microscope is about 200nms. In order to be able to observe a much smaller object and increase the resolution of the microscope, it is necessary to use light having a much shorter wavelength as the light source.
The most commonly used technical parameters for describing illumination are luminescence intensity and color temperature. Luminescence intensity, with lumen as unit, is the physical unit of luminous flux. The more lumens, the stronger the illumination. Color temperature, with K (Kelvin) as unit, is a unit of measure indicating the color component of the light. The color temperature of red is the lowest, then orange, yellow, white, and blue, all gradually increased, with the color temperature of blue being the highest. The light color of the incandescent lamp is warm white, its color temperature is 2700K, the color temperature of the halogen lamp is about 3000K, and the color temperature of the daylight fluorescent lamp is 6000K.


A complex and complete lighting system can include a light source, a lampshade or lamp compartment, a condenser lens, a diaphragm, a variety of wavelength filters, a heat sink cooling system, a power supply, and a dimming device etc. Select and use different parts as needed. Of which, selection and use of the illuminating light source is the most important part of the microscope illumination system, as and other components are designed around the illuminating wavelength curve and characteristics of the illuminating light source.

Some of the microscope light sources are pre-installed on the body or frame of the microscope, and some are independent. There are many types and shapes of light sources. Depending on the requirements of the microscope and the object to be observed, one type or multiple types of illumination at the same time can be selected. In addition, the whole beam and band adjustment of the light source, the position and illumination angle of the light source, and the intensity and brightness of the light all have a great influence on the imaging.
For microscope imaging, a good lighting system may be a system that allows for more freedom of adjustment. In actual work, such as industry, too many adjustment mechanisms may affect the efficiency of use, therefore choose the appropriated configured lighting conditions is very important.
Coaxial Reflection IlluminatorClose Λ
Coaxial reflection light is realized by a coaxial reflection illuminator. Coaxial reflection illuminator is placed horizontally, parallel to the worktable, and is at a 90 degree angle to the optical axis of the microscope. When the illumination light passes through the coaxial reflection illuminator, the light is first turned through a reflection prism or beam splitter to a 90-degree angle, and is vertically (or nearly vertical) irradiated onto the surface of the object to be observed, and then reflected back to enter into the eyepiece through the objective lens.
The coaxial reflected light is suitable for illuminating planar objects and objects with high reflectivity. In addition, when the opaque or translucent objects are observed by large magnification objective lens, if the working distance is too short and an external light source cannot be used, the coaxial reflected light may be the best and the only choice.

Coaxial reflection illuminator, usually consisting of illumination light source, lamp chamber, condenser lens, aperture diaphragm and field diaphragm, color filter converter, and heat sink etc., achieves light emission and control.

The light or lamp chamber is generally made of a metal shell, with a ventilating vent or heat sink on the outside, but does not leak light, and has a spiral or top wire mechanism for adjusting the light axis.

Light source filament position and coaxial adjustment of the center of the optical axis
Because the illumination source is modularized with the microscope body and also, when in use, due to movement operation etc., the position of the filament of the illumination source and the illumination optical axis often deviate, which causes the Kohler illumination system to be damaged, thereby affecting the brightness of the field of view and the uniformity of illumination.
The main reason that affects the uniformity of illumination is that the position of the filament of the light source is not on the optical axis, which makes the field of view appear uneven. The main reason that affects the brightness of the field of view is that, after passing through the condenser for condensation, the illumination light is not focused on the aperture diaphragm plane.
The above therefore needs to adjust the position of the bulb in the coaxial reflection illuminator. Firstly, by adjusting the positioning screw on the light source, change the position of the lamp holder, and adjust the illumination bulb up and down, left and right, so that the filament is located on the optical axis of the center. Then, loosen the fixing screws on the condenser, move the condenser back and forth, so that the illumination light will converge at the center of the aperture diaphragm, and then tighten the screws. This not only makes the illumination in the field of view the brightest, but also uniform, and has no filament image.
Some metallurgical microscopes are equipped with "light chamber adjustment objective lens". When using, first remove an objective lens, rotate the light chamber adjustment objective lens into the nosepiece, and transfer it into the imaging light path, and replace the objective lens for the above adjustment.
Aperture DiaphragmClose Λ
The diaphragm that determines the image plane necessary for imaging through the objective lens is called the aperture diaphragm. All irises of the traditional microscope are aperture diaphragm.

The function of aperture diaphragm is mainly to limit the size of the imaging beam, change the luminous flux, thereby improving the imaging quality. The size of the aperture diaphragm is usually variable, and it is also called iris diaphragm. When the aperture diaphragm lock is too small and the luminous flux of the imaging beam is insufficient, the fraction ratio of the objective lens is low, the imaging will become dark; however, when the aperture diaphragm is too large, there will be strong light in the field of view, and even though viewed from the eyepiece, it may have high resolution, the image on the display will be overexposed.
After replacing the objective lens, the aperture diaphragm should also be adjusted appropriately, rather than adjusting the brightness of the light.
The aperture diaphragm of the transmitted light is generally mounted on the microscope base. The aperture diaphragm of the biological microscope is mounted on the condenser device. On the other hand, the aperture diaphragm of compound microscopes, such as large upright metallurgical or fluorescence microscopes, is generally mounted on the in the coaxial reflection illuminator.
In the use of the aperture diaphragm, it is often necessary to adjust the center of the diaphragm. Generally, it is adjusted together with the condenser. Please refer to the adjustment method of the condenser.
Field DiaphragmClose Λ
Field diaphragm is also called field of view diaphragm, field of view cutting diaphragm.
The diaphragm that defines the incident angle of view and the exit angle of view of the beam emitted from the object plane, is called field diaphragm.

The main function of the field diaphragm is to limit the range of the image surface size of the observed specimen, and cut off the part of the image edge image plane with relatively poor image quality, so that the entire image plane is clear and flat, but does not affect the resolution of the entire objective lens.
The appropriate adjustment of the field diaphragm can also adjust the glare reflected from the inner wall of the lens tube to improve the imaging contrast and quality. On the eyepiece of the microscope, there is a field-cutting diaphragm. The size of this diaphragm is fixed, and it is also called fixed diaphragm. Its position is between the field lens and the eyepiece, and its function is to limit the emit angle of view of the main beam, so as to make the imaging of the field edge to achieve an ideal effect.
The field diaphragm of most biological microscopes is on the light exit of the base, while the field diaphragm of compound microscopes, such as upright metallurgical and fluorescent microscope, are mounted on the coaxial reflection illuminator.
PackagingClose Λ
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection.
For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem.

More Info

Packing  
Packaging TypeCarton Packaging
Packaging MaterialCorrugated Carton
Packaging Dimensions(1)25.5x25.5x12.8cm (10.039x10.039x5.039″)
Inner Packing MaterialPlastic Bag
Ancillary Packaging MaterialsStyrofoam
Gross Weight2.97kg (6.55lbs)
Transportation CartonCarton Packaging
Transportation Carton MaterialCorrugated Carton
Transportation Carton Dimensions(1)25.5x25.5x12.8cm (10.039x10.039x5.039″)
Total Gross Weight of Transportation(kilogram)2.97
Total Gross Weight of Transportation(pound)6.55

Related Products