Optical System | Infinite |
System Optical Magnification | 8-50X |
Expandable System Optical Magnification (Optional Parts Required) | 2.4-200X |
Total Magnification | 8-50X |
Standard Eyepiece | 10X Adjustable Eyepiece |
Standard Objective | 1X Infinity Plan Achromatic Objective |
System Field of View | Dia. 4.4-27.5mm |
Expandable System Field of View | Dia. 1.2-100mm |
System Working Distance | 78mm |
Expandable System Working Distance | 32.5-276mm |
0-35° Stereo Binocular Head | |
Eye Tube Optical System | Infinite |
Eye Tube Type | For Stereo Microscope |
Eye Tube Adjustment Mode | Siedentopf |
Eye Tube Angle | 0-35° |
Erect/Inverted Image | Erect image |
Eye Tube Rotatable | 360° Degree Rotatable |
Interpupillary Adjustment | 56-143mm |
Eye Tube Inner Diameter | Dia. 30mm |
Eye Tube Fixing Mode | Elastic Tube locking |
Eye Tube Size for Scope Body/Carrier | Dia. 60mm |
Surface Treatment | Spray Paint |
Material | Metal |
Color | White |
Net Weight | 1.38kg (3.04lbs) |
10X Adjustable Eyepiece (Pair Dia. 30/FN24) | |
Eyepiece Type | Adjustable Eyepiece |
Eyepiece Optical Magnification | 10X |
Plan Eyepiece | Plan Eyepiece |
Eyepiece Size for Eye Tube | Dia. 30mm |
Eyepiece Field of View | Dia. 24mm |
Eyepoint Type | High Eyepoint Eyepiece |
Eyepiece Size for Reticle | Dia. 27mm |
Eyepiece Diopter Correction | ±5° |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 0.14kg (0.30lbs) |
Applied Field | For PZ0401, PZ0801 Series Microscope |
1X Infinity Plan Achromatic Objective | |
Objective Optical System | Infinite |
Objective Optical Magnification | 1X |
Objective Type | Plan Achromatic Objective |
Objective Working Distance | 78mm |
Numerical Aperture (N.A.) | N.A. 0.08 |
Objective Screw Thread | M58x1.25mm |
Objective Outer Diameter | Dia. 60mm |
Objective Height | 57mm |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 0.40kg (0.88lbs) |
Applied Field | For PZ0401 Series Microscope, Nikon SMZ 800/1000 Microscope |
0.8-5X Parallel Zoom Body | |
Body Optical System | Infinite |
Body Magnification | 0.8-5X |
Zoom Range | 0.8-5X |
Zoom Ratio | 1:6.3 |
Zoom Operating Mode | With Two Horizontal Knobs |
Body Mounting Size for Stand | Dia. 76mm |
Body Mount Type for Eye Tube | Fastening Screw |
Body Mounting Size for Eye Tube | Dia. 67mm |
Objective Screw Thread | M58x1.25mm |
Surface Treatment | Spray Paint |
Material | Metal |
Color | White |
Net Weight | 0.88kg (1.94lbs) |
Stand Type | Boom Stand |
Vertical Post Height | 384mm |
Maximum Vertical Post Extended Length | 254mm |
Vertical Post Diameter | Dia. 37.2mm |
Cross Adapter Type | Cross Hole Adapter |
Horizontal Arm Type | Horizontal Post |
Horizontal Arm Length | 544mm |
Horizontal Diameter | Dia. 37.2mm |
Mounting Hole on the Top of Horizontal Arm | 5/8 in. End Adapter |
Horizontal Rotation Angle | 360° Degree Rotatable |
Horizontal Arm Travel Distance on Z-Axis | 266mm |
Horizontal Arm Stretch Range | 480mm |
Horizontal Arm Maximum Load | 9.50kg (20.94lbs) |
Horizontal Arm Travel Mode on Horizontal Direction | Manual |
Horizontal Arm Travel Mode on Z Direction | Manual |
Base Type | Heavy Duty Base |
Base Shape | Rectangle |
Base Dimensions | 285x260x18mm |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 18.14kg (39.99lbs) |
Dimensions | 285x260x600mm (11.220x10.236x23.622 in. ) |
76mm E-Arm | |
Holder Adapter Type | Dia. 76mm Scope Holder |
Focus Distance | 50mm |
Coarse Focus Distance per Rotation | 20mm |
E-Arm Rotation Range on Horizontal Direction | 360° |
E-Arm Rotation Range on Z Direction | 180° |
E-Arm Mounting Adapter | 5/8 in. End Adapter |
Center Distance from E-Arm Adapter to Scope Holder | 130mm |
E-Arm Horizontal Adjustment Screw | Horizontal Adjustable |
Safety Protection Against Falling Screw | With Safety protection against falling Screw |
Surface Treatment | Spray Paint |
Material | Metal |
Color | White |
Net Weight | 0.84kg (1.85lbs) |
LED Ring Light (6W ID61mm 64Bulbs) | |
Light Source Type | LED Light |
Ring I.D. Size | Dia. 61mm |
LED Quantity | 64 |
Power Supply Adjustable | Light Adjustable |
Light Source Illuminance | 80000Lux |
Power Box Panel Meter Display | Pointer Panel Meter/Scale |
Power Box Cooling System | Heat Sink |
Power Box Dimensions | 122x96x43mm |
Bulb Color Temperature | 6500K |
Output Power | 6W |
Input Voltage | AC 90-265V 50/60Hz |
Output Voltage | DC 24V |
Power Cord Connector Type | USA 2 Pins |
Power Cable Length | 1.3m |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 0.42kg (0.93lbs) |
Screw Model | M4x24mm |
Surface Treatment | Spray Paint |
Material | Metal |
Color | White |
Net Weight | 22.20kg (48.94lbs) |
Dimensions | 285x260x600mm (11.220x10.236x23.622 in. ) |
PZ0401 | PZ02040444 |
Technical Info
Stereo microscopes are also known as the anatomical microscopes, or dissecting microscopes. Many people would refer to stereo microscope as Stereo, and the Continuous Zoom Microscope as Zoom. Stereo microscopes are a kind of binocular microscope that observes an object with both eyes from different angles, thereby causing a stereoscopic effect. The stereo microscope adopts two independent optical paths, and the left and right beams in the binocular tube have a certain angle, generally 12°~15°. The objects are observed from different angles of the two optical paths, causing a three-dimensional effect on the eyes, and therefore a stereo microscope is a true 3D microscope. Compared with other compound microscopes, stereo microscopes belong to the low power optical microscope. The field of view of stereo microscopes has a large diameter, its magnification is generally below 200X for optical magnification. When the magnification is greater than 40X, the stereoscopic effect of the image will be relatively poor. Therefore, the advantage of the stereo microscope is not that its magnification is large, but that its working distance is long and the depth of field is large, which is particularly suitable for observing objects with a high degree of three-dimensional features. For compound microscope with a single optical path, what we see is only a flat image. Although most compound microscopes have two eyepieces, what we actually see is one and the same image, and this is just to facilitate the observation habits of our two eyes. The stereo microscope has two optical paths (two objective lenses or one common objective lens), and only the three-dimensional sense produced under observation of the two optical paths can make people judge the three-dimensional spatial position of the observed object, which can generate a sense of distance under the microscope. Therefore, only stereo microscope can be used for operation under the microscope which is very suitable for surgery, dissection, industrial welding, assembly, precision instrument repair and so on. The stereo microscope can be equipped with a wide range of accessories. It can be combined with various digital cameras and photographic interfaces, microscope cameras, eyepiece cameras and image analysis software to form a digital imaging system. It can be connected to a computer for analysis and processing, and its lighting system also has different options for illumination, such as reflected light, transmitted light, etc. Stereoscopic microscopes are widely used in various fields, such as biology, medicine, agriculture, forestry, marine life, and other various departments. They are especially used in industry, for macroscopic surface observation, analysis, and microscopic operations. Stereoscopic microscopes were invented by American instrument engineer Horatio S. Greenough in the 1890s, manufactured by Carl Zeiss Company of Germany, and are widely used in scientific research, archaeological exploration, industrial quality control, biopharmaceuticals, and more. Stereo Microscope Quick Operation Steps Step 1 In the working position, place the microscope on the workbench after installation. Connect the power source, and turn on the light source. Place an observation sample (also known as specimen) such as a coin etc. under the microscope or on the base. Adjust the focus knob of the stand by visually measuring the height, or based on the working distance parameters of the objective lens used. Step 2 Adjust the zoom knob of the microscope to the lowest magnification. Find the approximate image by adjusting the focus knob. Find a certain feature point of the sample in approximately the center position. Align the feature point of the specimen and gradually adjust to a large magnification. Adjust the lift set of the microscope to find the focal plane of the highest magnification. During the adjustment process, use a sample with obvious feature points (such as a coin) to compare the sharpness of the image. Turn the zoom knob again to the lowest magnification. It is possible that the image may be out of focus. At this time, do not adjust the focusing knob. Simply adjust the diopters on the two eyepieces to accommodate differences in eye observations (diopter varies from person to person). Adjust the viewing distance of the eyepiece to achieve a comfortable position. At this point, the microscope is already parfocal, i.e., when the microscope is changed from high power to low power, the entire image is in the focal plane. To observe the same sample, it is not necessary to adjust other parts of the microscope. Only the zoom knob is needed to zoom in on the specimen for observation. Step 3 Adjust the light source, including the brightness and angle of incidence to get the best image or see additional details. Step 4 Adjust any other necessary equipment such as the photographic eyepieces, cameras, etc., to show the image on the display or to find the sharpest image. When using binocular observation and the left and right images or sharpness is not the same, first adjust the diopter adjustment on the eyepiece. This adjusts the parallax of the two eyes, so that the image of the two eyes are consistent. It is normal to feel viewing fatigue when using a microscope for a long time. Take a break before working again to adapt your eyes to using the microscope. If the microscope is used for too long, or if there is a problem inside the microscope due to large temperature difference, vibration, etc., please contact your dealer or our service staff on the BoliOptics website. |
Microscopes and components have two types of optical path design structures. One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope. Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required. The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects. The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough. Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective. |
The magnification of the objective lens refers to the lateral magnification, it is the ratio of the image to the real size after the original image is magnified by the instrument. This multiple refers to the length or width of the magnified object. System optical magnification is the product of the eyepiece and the objective lens (objective lens zoom set) of the optical imaging part within the system. Optical magnification = eyepiece multiple X objective lens/objective lens set The maximum optical magnification of the microscope depends on the wavelength of the light to which the object is illuminated. The size of the object that can be observed must be greater than the wavelength of the light. Otherwise, the light cannot be reflected or transmitted, or recognized by the human eye. The shortest wavelength of ultraviolet light is 0.2 microns, so the resolution of the optical microscope in the visible range does not exceed 0.2 microns, or 200 nanometers. This size is converted to the magnification of the microscope, and it is the optical magnification of 2000X. Usually, the compound microscope can achieve 100X objective lens, the eyepiece is 20X, and the magnification can reach 2000X. If it is bigger, it will be called "invalid magnification", that is, the image is large, but the resolution is no longer increased, and no more details and information can be seen. |
Total magnification is the magnification of the observed object finally obtained by the instrument. This magnification is often the product of the optical magnification and the electronic magnification. When it is only optically magnified, the total magnification will be the optical magnification. Total magnification = optical magnification X electronic magnification Total magnification = (objective X photo eyepiece) X (display size / camera sensor target ) |
Field of View, is also called FOV. The field of view, or FOV, refers to the size of the object plane (i.e., the plane of the point of the observed object perpendicular to the optical axis), or of its conjugate plane (i.e., object to primary image distance), represented by a line value. System field of view is the size of the actual diameter of the image of the terminal display device of the instrument, such as the size of the image in the eyepiece or in the display. Field of view number refers to the diameter of the field diaphragm of the objective lens, or the diameter of the image plane formed by the field diaphragm. Field of view number of objective lens = field of view number of eyepiece / (objective magnification / mechanical tube length) Large field of view makes it easy to observe the full view and more range of the observed object, but the field of view (FOV) is inversely proportional to the magnification and inversely proportional to the resolution, that is, the larger the field of view, the smaller the magnification, and also the lower the resolution of the object to be observed. There are usually two ways to increase the field of view, one is to replace with an objective lens of a smaller multiple, or to replace with an eyepiece of a smaller multiple. |
Working distance, also referred to as WD, is usually the vertical distance from the foremost surface end of the objective lens of the microscope to the surface of the observed object. When the working distance or WD is large, the space between the objective lens and the object to be observed is also large, which can facilitate operation and the use of corresponding lighting conditions. In general, system working distance is the working distance of the objective lens. When some other equipment, such as a light source etc., is used below the objective lens, the working distance (i.e., space) will become smaller. Working distance or WD is related to the design of the working distance of the objective lens. Generally speaking, the bigger the magnification of the objective lens, the smaller the working distance. Conversely, the smaller the magnification of the objective lens, the greater the working distance. When it is necessary to change the working distance requirement, it can be realized by changing the magnification of the objective lens. |
For siedentopf eyetube, when changing the interpupillary distance, it requires two hands pushing or pulling the two eyetubes left and right simultaneously, and the two eyepiece tubes or eyetubes will change their position at the same time. |
Usually the Microscope Eyetube is 45°, some is 30°, Tiltable Eyetube Angle design of a microscope is also known as the ergonomics microscope. 0-30° or 0-45° is an ergonomic design. When the mechanical tube length / focal length of the tube of the microscope is relatively big, the microscope is relatively high, and the user's height or the seat of the work desk is not suitable, long-term use of microscope may cause sitting discomfort. Eyepiece tube with variable angle can freely adjust the angle without lowering the head. Especially when it is close to 0 degree and the human eye is close to horizontal viewing, long-time or long-term use can avoid fatigue damage to the cervical vertebra. |
After imaging through a set of objective lenses, the object observed and the image seen by the human eye is inverted. When the observed object is manipulated, move the specimen or object, the image will move in the opposite direction in the field of view. Most of the biological microscopes are reversed-phase designs. When needing to operate works with accurate direction, it is necessary to design it into a forward microscope. Generally stereo microscopes and metallurgical microscopes are all of erect image design. When observing through the camera and display, the erect and inverted image can be changed by the orientation of the camera. |
The eyepiece of the microscope can have different viewing or observing directions. When the position of the microscope is uncomfortable, the direction of the eyepiece tube of the microscope can be adjusted, to facilitate observation and operation. Placement method of different viewing angles of the microscope: General direction: the support column is behind the object to be observed Reverse direction: the support column is in front of the object to be observed Lateral direction: the support column is on the side of the object to be observed Rotating eyepiece tube, different microscopes may have different methods, for some, the direction is confirmed when installing the eyepiece tube of the microscope, for some, by rotating the body of the microscope, and for some, by rotating the support member on the support or holder of the microscope. |
The distance between the two pupils of the human eye is different. When the image of exit pupil of the two eyepieces of the microscope are not aligned with the entry pupil of the eye, the two eyes will see different images, which can cause discomfort. Adjust the distance between the two eyepieces, to accommodate or adapt to the pupil distance of the observer's eyes. The adjustment range is generally between 55-75mm. |
The adjustable eyepiece is between the lens of the eyepiece and the focal plane, with distance adjustable device. For most people, their two eyes, the left and the right, have different vision. For adjustable eyepieces, the eyepoint height of the eyepiece can be adjusted to compensate for the difference in vision between the two eyes, making the image in the two eyes clear and consistent. The range of adjustment of the general eyepiece is that the diopter is plus or minus 5 degrees, and the maximum difference between the two eyepieces can reach 10 degrees. Before use, it is generally necessary to adjust both eyepieces to the initial position where the scale is displayed as 0, which is used as a baseline to facilitate up and down adjustment. The reticle position of the eyepiece is generally 10mm below the fixed position of the eyepiece tube. Because the vision of each person is different, some people may not be able to see the reticle clearly. For adjustable eyepiece, the height of the reticle position can be adjusted to make the reticle and the observed object clear at the same time, this is the advantage of adjustable eyepiece that mounts the diopter adjustment on the eyepiece tube compared with non-adjustable eyepiece. When non-adjustable eyepiece is equipped with a reticle, if the diopter is adjusted, the reticle will rotate accordingly, thereby affecting the position of the measurement. For adjustable eyepiece, when its diopter is adjusted, its reticle does not rotate. |
Eyepiece optical magnification is the visual magnification of the virtual image after initial imaging through the eyepiece. When the human eye observes through the eyepiece, the ratio of the tangent of the angle of view of the image and the tangent of the angle of view of the human eye when viewing or observing the object directly at the reference viewing distance is usually calculated according to 250 mm/focal length of eyepiece. The standard configuration of a general microscope is a 10X eyepiece. Usually, the magnification of the eyepiece of compound microscope is 5X, 8X, 10X, 12.5X, 16X, 20X. As stereo microscope has a low total magnification, its eyepiece magnification generally does not use 5X, but can achieve 25X, 30X and other much bigger magnification. |
The eyepiece field of view is the diameter of the field diaphragm of the eyepiece, or the diameter of the image plane of the field diaphragm imaged by the field diaphragm. The diameter of a large field of view can increase the viewing range, and see more detail in the field of view. However, if the field of view is too large, the spherical aberration and distortion around the eyepiece will increase, and the stray light around the field of view will affect the imaging effect. |
Eye point refers to the axial distance between the upper end of the metal frame of the eyepiece and the exit of pupil. The exit of pupil distance of high eyepoint eyepiece is farther than that of the eye lens of the ordinary eyepiece. When this distance is greater than or equal to 18mm, it is a high eyepoint eyepiece. When observing, one does not need to be too close to the eyepiece lens, making it comfort to observe, and it can also be viewed with glasses. Generally, there is a glasses logo on the eyepiece, indicating that it is a high eyepoint eyepiece. |
The finite objective is the lateral magnification of the primary image formed by the objective at a prescribed distance. Infinite objective is the lateral magnification of the real image produced by the combination of the objective and the tube lens. Infinite objective magnification = tube lens focal length (mm) / objective focal length (mm) Lateral magnification of the image, that is, the ratio of the size of the image to the size of the object. The larger the magnification of the objective, the higher the resolution, the smaller the corresponding field of view, and the shorter the working distance. |
In the case of polychromatic light imaging, the aberration caused by the light of different wavelengths becomes chromatic aberration. Achromatic aberration is to correct the axial chromatic aberration to the two line spectra (C line, F line); apochromatic aberration is to correct the three line spectra (C line, D line, F line). The objective is designed according to the achromaticity and the flatness of the field of view. It can be divided into the following categories. Achromatic objective: achromatic objective has corrected the chromatic aberration, spherical aberration, and comatic aberration. The chromatic portion of the achromatic objective has corrected only red and green, so when using achromatic objective, yellow-green filters are often used to reduce aberrations. The aberration of the achromatic objective in the center of the field of view is basically corrected, and as its structure is simple, the cost is low, it is commonly used in a microscope. Semi-plan achromatic objective: in addition to meeting the requirements of achromatic objective, the curvature of field and astigmatism of the objective should also be properly corrected. Plan achromatic objective: in addition to meeting the requirements of achromatic objectives, the curvature of field and astigmatism of the objective should also be well corrected. The plan objective provides a very good correction of the image plane curvature in the field of view of the objective, making the entire field of view smooth and easy to observe, especially in measurement it has achieved a more accurate effect. Plan semi-apochromatic objective: in addition to meeting the requirements of plan achromatic objective, it is necessary to well correct the secondary spectrum of the objective (the axial chromatic aberration of the C line and the F line). Plan apochromatic objective: in addition to meeting the requirements of plan achromatic objective, it is necessary to very well correct the tertiary spectrum of the objective (the axial chromatic aberration of the C line, the D line and the F line) and spherochromatic aberration. The apochromatic aberration has corrected the chromatic aberration in the range of red, green and purple (basically the entire visible light), and there is basically no limitation on the imaging effect of the light source. Generally, the apochromatic aberration is used in a high magnification objective. |
The objective working distance is the vertical distance from the foremost surface end of the objective of the microscope to the object surface to be observed. Generally, the greater the magnification, the higher the resolution of the objective, and the smaller the working distance, the smaller the field of view. Conversely, the smaller the magnification, the lower the resolution of the objective, and the greater the working distance, and greater the field of view. High-magnification objectives (such as 80X and 100X objectives) have a very short working distance. Be very careful when focusing for observation. Generally, it is after the objective is in position, the axial limit protection is locked, then the objective is moved away from the direction of the observed object. The relatively greater working distance leaves a relatively large space between the objective and the object to be observed. It is suitable for under microscope operation, and it is also easier to use more illumination methods. The defect is that it may reduce the numerical aperture of the objective, thereby reducing the resolution. |
Numerical aperture, N.A. for short, is the product of the sinusoidal function value of the opening or solid angle of the beam reflected or refracted from the object into the mouth of the objective and the refractive index of the medium between the front lens of the objective and the object. Simply speaking, it is the magnitude of the luminous flux that can be brought in to the mouth of the objective adapter, the closer the objective to the specimen for observation, the greater the solid angle of the beam entering the mouth of the objective adapter, the greater the N.A. value, and the higher the resolution of the objective. When the mouth of the objective adapter is unchanged and the working distance between the objective and the specimen is constant, the refractive index of the medium will be of certain meaning. For example, the refractive index of air is 1, water is 1.33, and cedar oil is 1.515, therefore, when using an aqueous medium or cedar oil, a greater N.A. value can be obtained, thereby improving the resolution of the objective. Formula is: N.A. = refractive index of the medium X sin solid angle of the beam of the object entering the front lens frame of the objective/ 2 Numerical aperture of the objective. Usually, there is a calculation method for the magnification of the microscope. That is, the magnification of the microscope cannot exceed 1000X of the objective. For example, the numerical aperture of a 100X objective is 1.25, when using a 10X eyepiece, the total magnification is 1000X, far below 1.25 X 1000 = 1250X, then the image seen in the eyepiece is relatively clear; if a 20X eyepiece is used, the total magnification will reach 2000X, much higher than 1250X, then eventhoughthe image actually seen by the 20X eyepiece is relatively large, the effect will be relatively poor. |
For microscopes of different manufacturers and different models, the thread size of their objectives may also be different. In general, the objective threads are available in two standard sizes, allowing similar objectives between different manufacturers to be used interchangeably. One is the British system: RMS type objective thread: 4/5in X 1/36in, One is metric: M25 X 0.75mm thread. |
Zoom in zoom microscope means to obtain different magnifications by changing the focal length of the objective lens within a certain range through adjustment of some lens or lens set while not changing the position of the object plane (that is, the plane of the point of the observed object perpendicular to the optical axis) and the image plane (that is, the plane of the image imaging focus and perpendicular to the optical axis) of the microscope. Zoom range refers to the range in which the magnification is from low to high. In the zoom range of the microscope, there is no need to adjust the microscope knob for focusing, and ensure that the image is always clear during the entire zoom process. The larger the zoom range, the stronger the adaptability of the range for microscope observation, but the image effects at both ends of the low and high magnification should be taken into consideration, the larger the zoom range, the more difficult to design and manufacture, and the higher the cost will be. |
Zoom ratio is the ratio of the maximum magnification / the minimum magnification. Expressed as 1: (ratio of maximum magnification / minimum magnification). If the maximum magnification is 4.5X, the minimum magnification is 0.7X, then the zoom ratio = 4.5 / 0.7 = 6.4, the zoom ratio will be 1:6.4. Zoom ratio is obtained by the intermediate magnification group of the microscope. When the magnification is increased or decreased by using other objective lenses, the zoom ratio does not change accordingly. |
When microscope body changes the magnification, it is realized by adjusting the horizontally placed zoom knob. Because the knob is relatively small, it is therefore easier to zoom and the image is stable. For most of the dual stereo microscopes, magnification is realized by adjusting the zoom drum or nosepiece below. When the nosepiece is relatively big, frequent operation is more laborious. Magnifying while observing, the microscope may shake, thereby causing eye discomfort for observation. Using zoom drum or nosepiece type microscope, if there is a ring light under the microscope, the ring light carries the wire, and when magnification conversion is often required, the ring light and the wire will swing along with the magnification, which makes the operation inconvenient. This situation will not occur to zoom with two horizontal knobs. |
Boom stand is also called universal stand. It is a relatively large pole type stand. The height and length of the stand are big, and it can be freely adjusted in height, length and various angles. Its large weight ensures stable support and occupation of large space, but it can make the microscope free to move in a wide range with convenience. Boom stand is suitable for observing large objects. The direction of boom stand is flexible, and when in use, various kinds of positions and methods can be adopted, such as front, side, and tilt etc., to facilitate the layout of the workbench. On the side of the crossbar of the boom stand, a 5/8-inch connecting hole is generally left for connecting various focusing mechanisms and microscopes. The base of the boom stand usually only plays a fixing and supporting role. Under the observation of the microscope, it is an empty workbench, which can be used to place various platforms, work operating surfaces, and tools, etc., and can be freely combined into different working positions. When the base is large, the object to be observed can also be placed. In industrial places, most of the working positions are fixed. Sometimes, in one working position, a lot of tools, equipment and instruments need to be placed.. Because the microscope is relatively large in size and takes up also a relatively bigger space, and not convenient to move back and forth, therefore for purpose of use, the boom stand can be placed in an appropriate position, and does not need to occupy the most commonly used work tables. When in use, the microscope can be moved over, and pushed to the side when not in use. This is very suitable for use in electronics factories, installation and maintenance, medical and animal anatomy, archaeology and other industries. Boom stand generally does not have a fixed focusing device, and you can choose a variety of flexible accessories. Because the stand needs to ensure flexibility, therefore there are many locking buttons in all directions. In any time after adjustment, it must be ensured that each knob is in a locked state to avoid sliding, tilting and flipping of the microscope, thereby damaging the microscope and the items on the workbench. |
Usually the universal joint is called E-Arm, i.e., Easy-Arm, also known as Universal Arm. Many people in the industry call it Bonder Arm, which refers to the components that connect the microscope on the COG Bonding Machine. At the tail of the E-arm there is a standard 5/8 inch (0.625 inch, 15.875mm) connector. The connector can be moved freely in both horizontal and vertical directions, and can also be fixed at an angular position in the vertical direction to facilitate microscope observation from different angles. E-arm can be connected to various kinds of microscope stands with 5/8-inch adapters, such as boom stand, flexible arm etc. It is also possible to connect various kinds of microscopes by adding or replacing different adapters. Note that, in general, these stands themselves are not directly configured with this E-arm, and separate purchase is necessary. |
The 76mm stand scope holder is the most popular microscope body adapter size, suitable for stereo microscopes produced by most manufacturers. Place the microscope body in a 76mm scope holder, tighten with screws to avoid shaking when the microscope is in use. Because this stand scope holder is very common, some special-sized microscopes can also borrow and use this stand, but only need a specific adapter to connect the microscope body with a diameter of less than 76mm. |
Ring light is a kind of "shadowless lamp", which is illuminated from a 360-degree annular angle, and can observe the change of the edge and height of the object to be observed. It is very suitable for surface illumination of non-reflective objects, and is often used to observe and detect the edge of objects, surface structure, traces, etc. such as components on the printed circuit board, liquid crystal glass substrates, metal and non-metal surface dust, scratch damage, various kinds of particles, etc., and is also the most common way of illumination for stereo microscopes. Circular fluorescent light bulb is a bulb of peripheral illumination with no direction, it requires a reflective bowl to converge the light beam onto the illuminated object below the microscope. The diameter of the tube and the design of the reflective bowl determine the distance and position of the beam convergence point. The LED ring light consists of different LED bulbs. By setting the angle of the bulb, all the illumination beams are concentrated at one focus, and the annular or loop fiber is mostly designed by the incident angle of the fiber exit port. The central concentration range of the ring lamp usually needs to coincide with the focal length of the objective lens of the stereo microscope. The working distance of the 1X objective lens of stereo microscope is generally about 80-100mm, which is the focus convergence position of most of the ring lamps. Because the external light source itself has a certain height, therefore the concentration center range of the ring light source is generally between 45-65mm. If below 45mm, shadow starts to appear in the middle; if higher than 65mm, the light in the middle will gradually diverge, and the brightness will decrease. When a small objective lens (such as 0.75X/0.5X) is selected, the lighting effect can basically be achieved; but when an objective lens with larger magnification is used and the working distance is relatively small (for example, 2X), the illumination center of the ring lamp will be a "black center", the effect of lighting will be relatively poor. Ring lights are usually stuck at the bottom of the nosepiece. Tighten the screws. In general, the electrical wires should be pulled to the back of the operating position, the switch or button should be placed on the side for easy operation. Generally, the ring light needs to be stuck with a lens frame at the bottom of the nosepiece. On the objective frame, there is a card slot for screw fastening. There are also microscope nosepieces that contains a card slot position of its own, and does not need an objective frame. |
The brightness of the light source adjustable is very important in the imaging of the microscope. Since the difference of the numerical aperture of the objective lens of high magnification and low magnification is very big, more incident light is needed to achieve a much better resolution when using a high magnification objective lens. Therefore, when observing through a high magnification objective lens, the brightness required is high; when observing through a low magnification objective lens, the brightness required is low. When observing different objects, or feature points of the same object at different positions, the brightness needs are also different; including the difference of background light or reflection within the field of view of observation, it has a great influence on the effect of observing the object, and therefore one needs to adjust the brightness of the light source according to each object to be observed. In the light source capable of providing continuous spectrum, such as a halogen lamp, the brightness adjustment of the light not only adjusts the brightness and intensity of the light, but also changes the spectrum emitted by the light source. When the light source is dark, there are many components of red light, and when the brightness is high, there are more blue spectrum. If the required light is strong and the spectrum needs to be changed, the light can be kept at a brighter intensity, which is solved by adjusting the spectrum by adding a color filter. Take note of the dimming button on the light source, after the On/Off switch is turned on, normally clockwise is to brighten, and counterclockwise is to darken. If it is adjusted to the lowest brightness, the light source should normally be lit. If the naked eye still can't see the object being illuminated brightly, you need to adjust the brightness knob to a much bigger position. Generally, there is scale marking on the dimming knob, which is an imaginary number representing the percentage of brightness, or an electronic digital display, giving the brightness of the light source under the same conditions a marking. |
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection. For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem. |
Microscope Optical Data Sheet | ||||||||||||
P/N | Objective | Objective Working Distance | Eyepiece | |||||||||
PZ04013221 (10X Dia. 24mm) | SZ04023421 (15X Dia. 16mm) | SZ17013421 (15X Dia. 16mm) | SZ04023621 (20X Dia. 12.5mm) | SZ17013621 (20X Dia. 12.5mm) | ||||||||
Magnification | Field of View(mm) | Magnification | Field of View(mm) | Magnification | Field of View(mm) | Magnification | Field of View(mm) | Magnification | Field of View(mm) | |||
PZ04014111 | 0.3X | 276mm | 2.4-15X | 16-100mm | 3.6-22.5X | 10.67-66.67mm | 3.6-22.5X | 10.67-66.67mm | 4.8-30X | 8.33-52.08mm | 4.8-30X | 8.33-52.08mm |
PZ04014211 | 0.5X | 186mm | 4-25X | 9.6-60mm | 6-37.5X | 6.4-40mm | 6-37.5X | 6.4-40mm | 8-50X | 5-31.25mm | 8-50X | 5-31.25mm |
PZ04014241 | 0.5X | 126mm | 4-25X | 9.6-60mm | 6-37.5X | 6.4-40mm | 6-37.5X | 6.4-40mm | 8-50X | 5-31.25mm | 8-50X | 5-31.25mm |
PZ08014311 | 0.7X | 135mm | 5.6-35X | 6.86-42.86mm | 8.4-52.5X | 4.57-28.57mm | 8.4-52.5X | 4.57-28.57mm | 11.2-70X | 3.57-22.32mm | 11.2-70X | 3.57-22.32mm |
PZ04014431 | 1X | 78mm | 8-50X | 4.8-30mm | 12-75X | 3.2-20mm | 12-75X | 3.2-20mm | 16-100X | 2.5-15.62mm | 16-100X | 2.5-15.62mm |
PZ04014631 | 2X | 32.5mm | 16-100X | 2.4-15mm | 24-150X | 1.6-10mm | 24-150X | 1.6-10mm | 32-200X | 1.25-7.81mm | 32-200X | 1.25-7.81mm |
1. Magnification=Objective Optical Magnification * Body Magnification * Eyepiece Optical Magnification | ||||||||||||
2. Field of View=Eyepiece Field of View /(Objective Optical Magnification*Body Magnification) | ||||||||||||
3. The Darker background items are Standard items, the white background items are optional items. |
Contains | |||||||||||||||||||||||||
Parts Including | |||||||||||||||||||||||||
|
Packing | |
Packaging Type | Carton Packaging |
Packaging Material | Corrugated Carton |
Packaging Dimensions(1) | 26x17.5x18cm (10.236x6.890x7.086″) |
Packaging Dimensions(2) | 26x18x15cm (10.236x7.086x5.905″) |
Packaging Dimensions(3) | 29x16x18cm (11.417x6.299x7.087″) |
Packaging Dimensions(4) | 51x43x18cm (20x17x7″) |
Packaging Dimensions(5) | 25x21x6cm (9.843x8.268x2.362″) |
Inner Packing Material | Plastic Bag |
Ancillary Packaging Materials | Styrofoam |
Gross Weight | 24.65kg (54.34lbs) |
Minimum Packaging Quantity | 1pc |
Transportation Carton | Carton Packaging |
Transportation Carton Material | Corrugated Carton |
Transportation Carton Dimensions(1) | 26x17.5x18cm (10.236x6.890x7.086″) |
Transportation Carton Dimensions(2) | 26x18x15cm (10.236x7.086x5.905″) |
Transportation Carton Dimensions(3) | 29x16x18cm (11.417x6.299x7.087″) |
Transportation Carton Dimensions(4) | 51x43x18cm (20x17x7″) |
Transportation Carton Dimensions(5) | 25x21x6cm (9.843x8.268x2.362″) |
Total Gross Weight of Transportation(kilogram) | 24.65 |
Total Gross Weight of Transportation(pound) | 54.34 |
Quantity of One Transportation Carton | 5pc |