0.35-2.25X Video Zoom Microscope Body MZ07011111

SKU:
MZ07011111
Warranty:
5/1 Years
Condition:
New
$621.96
& Free shipping * Contiguous USA Only
In Stock
Other Shipping Options
Quick Overview
Finite. Total Magnification: 0.35-2.25X. 1X Built-in Objective. Standard Coupler: 0.5X. Zoom Ratio: 1:6.4. Body Mounting Size for Stand: Dia. 40mm. Magnification Detent : 1X per pre-set stop.


MZ07011111 Video Zoom Microscope Body)
Optical System Specifications
Optical SystemFinite
System Optical Magnification0.35-2.25X
Expandable System Optical Magnification (Optional Parts Required)0.17-18X
Total Magnification0.35-2.25X
Standard Objective1X Built-in Objective
Standard Coupler0.5X
System Working Distance95mm
Expandable System Working Distance29.3-170mm
Zoom Lens Body
0.7-4.5X Video Zoom Body
Body Optical SystemFinite
Body Magnification0.7-4.5X
Zoom Range0.7-4.5X
Zoom Ratio1:6.4
Zoom Operating ModeWith the Nosepiece
Body Mounting Size for Stand Dia. 40mm
Magnification Detent 1X per pre-set stop
Body Mount Type for CouplerFastening Screw
Body Mount Size for Coupler Dia. 33.3mm
Objective Screw ThreadM25x0.75mm
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack
Net Weight0.35kg (0.77lbs)
Coupler/C-mount Adapter
0.5X Coupler
Coupler Mount Type for BodyFastening Screw
Coupler Mount Size for Body Dia. 33.3mm
Coupler for Microscope TypeVideo Zoom Lens Compatible
Coupler Magnification0.5X
For Camera Sensor SizeUnder 1/2 in.
C/CS-Mount CouplerC-Mount
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack
Net Weight0.14kg (0.30lbs)
Applied FieldFor MZ0701 Series Video Zoom Body

 


Technical Info

Instructions
FiniteClose Λ
Microscopes and components have two types of optical path design structures.
One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope.
Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required.
The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects.

The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough.
Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective.
System Optical MagnificationClose Λ
The magnification of the objective lens refers to the lateral magnification, it is the ratio of the image to the real size after the original image is magnified by the instrument. This multiple refers to the length or width of the magnified object.
System optical magnification is the product of the eyepiece and the objective lens (objective lens zoom set) of the optical imaging part within the system.
Optical magnification = eyepiece multiple X objective lens/objective lens set

The maximum optical magnification of the microscope depends on the wavelength of the light to which the object is illuminated. The size of the object that can be observed must be greater than the wavelength of the light. Otherwise, the light cannot be reflected or transmitted, or recognized by the human eye. The shortest wavelength of ultraviolet light is 0.2 microns, so the resolution of the optical microscope in the visible range does not exceed 0.2 microns, or 200 nanometers. This size is converted to the magnification of the microscope, and it is the optical magnification of 2000X. Usually, the compound microscope can achieve 100X objective lens, the eyepiece is 20X, and the magnification can reach 2000X. If it is bigger, it will be called "invalid magnification", that is, the image is large, but the resolution is no longer increased, and no more details and information can be seen.
Total MagnificationClose Λ
Total magnification is the magnification of the observed object finally obtained by the instrument. This magnification is often the product of the optical magnification and the electronic magnification.
When it is only optically magnified, the total magnification will be the optical magnification.

Total magnification = optical magnification X electronic magnification
Total magnification = (objective X photo eyepiece) X (display size / camera sensor target )
System Working DistanceClose Λ
Working distance, also referred to as WD, is usually the vertical distance from the foremost surface end of the objective lens of the microscope to the surface of the observed object.
When the working distance or WD is large, the space between the objective lens and the object to be observed is also large, which can facilitate operation and the use of corresponding lighting conditions.
In general, system working distance is the working distance of the objective lens. When some other equipment, such as a light source etc., is used below the objective lens, the working distance (i.e., space) will become smaller.

Working distance or WD is related to the design of the working distance of the objective lens. Generally speaking, the bigger the magnification of the objective lens, the smaller the working distance. Conversely, the smaller the magnification of the objective lens, the greater the working distance.
When it is necessary to change the working distance requirement, it can be realized by changing the magnification of the objective lens.
Zoom RangeClose Λ
Zoom in zoom microscope means to obtain different magnifications by changing the focal length of the objective lens within a certain range through adjustment of some lens or lens set while not changing the position of the object plane (that is, the plane of the point of the observed object perpendicular to the optical axis) and the image plane (that is, the plane of the image imaging focus and perpendicular to the optical axis) of the microscope.
Zoom range refers to the range in which the magnification is from low to high. In the zoom range of the microscope, there is no need to adjust the microscope knob for focusing, and ensure that the image is always clear during the entire zoom process.
The larger the zoom range, the stronger the adaptability of the range for microscope observation, but the image effects at both ends of the low and high magnification should be taken into consideration, the larger the zoom range, the more difficult to design and manufacture, and the higher the cost will be.
Zoom RatioClose Λ
Zoom ratio is the ratio of the maximum magnification / the minimum magnification. Expressed as 1: (ratio of maximum magnification / minimum magnification). If the maximum magnification is 4.5X, the minimum magnification is 0.7X, then the zoom ratio = 4.5 / 0.7 = 6.4, the zoom ratio will be 1:6.4.
Zoom ratio is obtained by the intermediate magnification group of the microscope. When the magnification is increased or decreased by using other objective lenses, the zoom ratio does not change accordingly.
With the NosepieceClose Λ
When the microscope body changes the magnification, it is realized by adjusting the zoom drum or nosepiece. Generally, the lower case of the microscope is used as the zoom drum or nosepiece. When magnification conversion is required, it can be realized by turning the zoom drum or nosepiece.
Magnification Detent Close Λ
In the body of zoom microscope, zooming is continuous. When rotating to a certain position, generally an integral multiple, a positioning structure or detent is added, which has a distinct hand feel during the zooming process, and stops at this position.
When measuring, or testing by factory for unified standard magnification, a magnification detent device can avoid the error caused by the inaccurate multiple positioning of the optical magnification.
Objective Screw ThreadClose Λ
For microscopes of different manufacturers and different models, the thread size of their objectives may also be different.
In general, the objective threads are available in two standard sizes, allowing similar objectives between different manufacturers to be used interchangeably.
One is the British system: RMS type objective thread: 4/5in X 1/36in,
One is metric: M25 X 0.75mm thread.
Coupler/C-mount AdapterClose Λ
Coupler/C-mount adapter is an adapter commonly used for connection between the C-adapter camera (industrial camera) and a microscope.
Coupler for Microscope TypeClose Λ
Different coupler/C-mount-adapters are suitable for different microscopes. For some, some adapter accessories need to be replaced. See the applicable range of each coupler/C-mount-adapter for details.
Coupler MagnificationClose Λ
Coupler magnification refers to the line field magnification of the coupler/C-mount-adapter. With different magnifications of the adapter lens, images of different magnifications and fields of view can be obtained. The size of the image field of view is related to the sensor size and the coupler/C-mount-adapter magnification.

Camera image field of view (mm) = sensor diagonal / coupler/C-mount-adapter magnification.

For example: 1/2 inch sensor size, 0.5X coupler/C-mount-adapter coupler, field of view FOV (mm) = 8mm / 0.5 = 16mm.
The field of view number of the microscope 10X eyepiece is usually designed to be 18, 20, 22, 23mm, less than 1 inch (25.4mm). Since most commonly used camera sensor sizes are 1/3 and 1/2 inches, this makes the image field of view on the display always smaller than the field of view of the eyepiece for observation, and the visual perception becomes inconsistent when simultaneously viewed on both the eyepiece and the display. If it is changed to a 0.5X coupler/C-mount-adapter, the microscope image magnification is reduced by 1/2 and the field of view is doubled, then the image captured by the camera will be close to the range observed in the eyepiece.
Some adapters are designed without a lens, and their optical magnification is considered 1X.
For Camera Sensor SizeClose Λ
For the size of the lens field of view of the coupler/C-mount-adapter, in the design process, the size of the camera sensor imaging target should be considered. When the field of view of the lens is smaller than the target plane of the camera, “black border” and “dark corner” will appear.
The general microscope coupler/C-mount adapters are generally designed for the 1/2" camera targets. When a camera of 2/3 or larger target is used, the “dark corner” phenomenon will appear in the field of view. Especially, at present, DSLR cameras generally use large target plane design (1 inch full field of view), when used for microscopic photographing, the general DSLR camera coupler/C-mount adapter will have “black border”.
Generally, the “dark corner” that appears on the field of view is often that the center of the microscope and the camera are not aligned. Adjust the position of the screw on the camera adapter, or turn the camera adapter to adjust or change the effect.
C/CS-Mount CouplerClose Λ
At present, the coupler/C-mount adapter generally adopts the C/CS-Mount adapter to match with the industrial camera. For details, please refer to "Camera Lens Mount".
PackagingClose Λ
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection.
For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem.

 


Optical Data

 

Video Microscope Optical Data Sheet
P/NObjective Coupler
MZ07016131  (0.5X)MZ07016181  (0.67X)MZ07016151  (1X)MZ07016171  (2X)
MagnificationMagnificationMagnificationMagnification
MZ070142110.5X0.18-1.12X0.23-1.51X0.35-2.25X0.7-4.5X
MZ070143110.75X0.26-1.69X0.35-2.26X0.52-3.38X1.05-6.75X
MZ070145111.5X0.52-3.38X0.7-4.52X1.05-6.75X2.1-13.5X
MZ070146112X0.7-4.5X0.94-6.03X1.4-9X2.8-18X
1. Magnification=Objective Optical Magnification * Body Magnification * Coupler Magnification



Camera Image Sensor Specifications
No.Camera Image Sensor SizeCamera image Sensor Diagonal
(mm)(inch)
11/4 in. 4mm0.157"
21/3 in. 6mm0.236"
31/2.8 in. 6.592mm0.260"
41/2.86 in. 6.592mm0.260"
51/2.7 in. 6.718mm0.264"
61/2.5 in. 7.182mm0.283"
71/2.3 in. 7.7mm0.303"
81/2.33 in. 7.7mm0.303"
91/2 in. 8mm0.315"
101/1.9 in. 8.933mm0.352"
111/1.8 in. 8.933mm0.352"
121/1.7 in. 9.5mm0.374"
132/3 in. 11mm0.433"
141/1.2 in. 12.778mm0.503"
151 in. 16mm0.629"
161/1.1 in. 17.475mm0.688"



Digital Magnification Data Sheet
Image Sensor SizeImage Sensor Diagonal sizeMonitor
Screen Size (24in)
Digital Zoom Function
1/3 in. 6mm101.6
1. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size



Microscope Optical and Digital Magnifications Data Sheet
ObjectiveCouplerCameraMonitorVideo Microscope Optical MagnificationsDigital Zoom FunctionTotal MagnificationField of View (mm)
PNMagnificationPNMagnification Image Sensor SizeImage Sensor Diagonal sizeScreen Size
MZ070142110.5XMZ070161310.5X1/3 in. 6mm24in0.18-1.12X101.618.29-113.79X5.36-33.33mm
MZ070142110.5XMZ070161810.67X1/3 in. 6mm24in0.23-1.51X101.623.37-153.42X3.97-26.09mm
MZ070142110.5XMZ070161511X1/3 in. 6mm24in0.35-2.25X101.635.56-228.6X2.67-17.14mm
MZ070142110.5XMZ070161712X1/3 in. 6mm24in0.7-4.5X101.671.12-457.2X1.33-8.57mm
MZ070143110.75XMZ070161310.5X1/3 in. 6mm24in0.26-1.69X101.626.42-171.7X3.55-23.08mm
MZ070143110.75XMZ070161810.67X1/3 in. 6mm24in0.35-2.26X101.635.56-229.62X2.65-17.14mm
MZ070143110.75XMZ070161511X1/3 in. 6mm24in0.52-3.38X101.652.83-343.41X1.78-11.54mm
MZ070143110.75XMZ070161712X1/3 in. 6mm24in1.05-6.75X101.6106.68-685.8X0.89-5.71mm
MZ070145111.5XMZ070161310.5X1/3 in. 6mm24in0.52-3.38X101.652.83-343.41X1.78-11.54mm
MZ070145111.5XMZ070161810.67X1/3 in. 6mm24in0.7-4.52X101.671.12-459.23X1.33-8.57mm
MZ070145111.5XMZ070161511X1/3 in. 6mm24in1.05-6.75X101.6106.68-685.8X0.89-5.71mm
MZ070145111.5XMZ070161712X1/3 in. 6mm24in2.1-13.5X101.6213.36-1371.6X0.44-2.86mm
MZ070146112XMZ070161310.5X1/3 in. 6mm24in0.7-4.5X101.671.12-457.2X1.33-8.57mm
MZ070146112XMZ070161810.67X1/3 in. 6mm24in0.94-6.03X101.695.5-612.65X1-6.38mm
MZ070146112XMZ070161511X1/3 in. 6mm24in1.4-9X101.6142.24-914.4X0.67-4.29mm
MZ070146112XMZ070161712X1/3 in. 6mm24in2.8-18X101.6284.48-1828.8X0.33-2.14mm
1. Video Microscope Optical Magnifications=Objective Optical Magnification * Body Magnification * Coupler Magnification
2. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size
3. Total Magnification= Video Microscope Optical Magnifications * (Screen Size * 25.4) / Image Sensor Diagonal size
4. Field of View (mm)= Image Sensor Diagonal size / Video Microscope Optical Magnifications

Optional Accessories For This Product

More Info

Contains  
Parts Including
PictureP/NProduct Name
MZ070111010.7-4.5X Video Zoom Body
MZ070161310.5X Coupler
Packing  
Packaging TypeCarton Packaging
Packaging MaterialCardboard Box
Packaging Dimensions(1)15.2x15.2x15.2cm (6x6x6″)
Inner Packing MaterialPlastic Bag
Ancillary Packaging MaterialsSponge
Gross Weight0.93kg (2.05lbs)
Minimum Packaging Quantity1pc
Transportation CartonCarton Packaging
Transportation Carton MaterialCorrugated Carton
Transportation Carton Dimensions(1)15.2x15.2x15.2cm (6x6x6″)
Total Gross Weight of Transportation(kilogram)1.06
Total Gross Weight of Transportation(pound)2.34

Related Products