0.35-2.25X Track Stand Video Zoom Microscope MZ02210011

SKU:
MZ02210011
Warranty:
5/1 Years
Condition:
New
  • 0.35-2.25X Track Stand Video Zoom Microscope MZ02210011
  • 0.35-2.25X Track Stand Video Zoom Microscope MZ02210011
  • 0.35-2.25X Track Stand Video Zoom Microscope MZ02210011
  • 0.35-2.25X Track Stand Video Zoom Microscope MZ02210011
  • 0.35-2.25X Track Stand Video Zoom Microscope MZ02210011
$859.92
& Free shipping * Contiguous USA Only
In Stock
Other Shipping Options
Quick Overview
Finite. Total Magnification: 0.35-2.25X. 1X Built-in Objective. Standard Coupler: 0.5X. Zoom Ratio: 1:6.4. Body Mounting Size for Stand: Dia. 40mm. Magnification Detent : 1X per pre-set stop. Track Stand.


MZ02210011 Video Zoom Microscope
Optical System Specifications
Optical SystemFinite
System Optical Magnification0.35-2.25X
Total Magnification0.35-2.25X
Standard Objective1X Built-in Objective
Standard Coupler0.5X
Zoom Lens Body
0.7-4.5X Video Zoom Body
Body Optical SystemFinite
Body Magnification0.7-4.5X
Zoom Range0.7-4.5X
Zoom Ratio1:6.4
Zoom Operating ModeWith the Nosepiece
Body Mounting Size for Stand Dia. 40mm
Magnification Detent 1X per pre-set stop
Body Mount Type for CouplerFastening Screw
Body Mount Size for Coupler Dia. 33.3mm
Objective Screw ThreadM25x0.75mm
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack
Net Weight0.35kg (0.77lbs)
Track Stand
76mm Track Stand
Stand TypeTrack Stand
Holder Adapter Type Dia. 76mm Scope Holder
Track Length280mm
Base TypeTable Base
Base ShapeFan-Shape
Stand Throat Depth130mm
Base Dimensions280x240x25mm
Focus ModeManual
Focus Distance105mm
Coarse Focus Distance per Rotation20mm
Focusing Knob Tightness AdjustableTightness Adjustable
Surface TreatmentSpray Paint
MaterialMetal
ColorWhite
Net Weight2.80kg (6.17lbs)
Donut Adapter
40/76mm Donut
Donut Adapter TypeScope Mounting Converter
Donut Adapter Size for Scope Mounting Dia. 40mm
Donut Adapter Size for Scope Holder Dia. 76mm
Donut Adapter Height20mm
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack
Net Weight0.18kg (0.40lbs)
Applied FieldFor MZ07011101 Video Zoom Body
Microscope Plate
140x6mm Black White Plate
Plate TypeBlack White Plate
Plate Size Dia. 140x6mm
MaterialPlastic (ABS)
ColorBlack, White
Net Weight0.12kg (0.26lbs)
Applied FieldFor ST1703 Series Track Stand
Coupler/C-mount Adapter
0.5X Coupler
Coupler Mount Type for BodyFastening Screw
Coupler Mount Size for Body Dia. 33.3mm
Coupler for Microscope TypeVideo Zoom Lens Compatible
Coupler Magnification0.5X
For Camera Sensor SizeUnder 1/2 in.
C/CS-Mount CouplerC-Mount
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack
Net Weight0.14kg (0.30lbs)
Applied FieldFor MZ0701 Series Video Zoom Body
Series
MZ0701MZ02210011

 


Technical Info

Instructions
Video Zoom LensClose Λ
Video zoom lens, refers to microscope that has only one set of imaging optical paths. It can be considered as a set of dual optical path stereo microscopes. The magnification and multiple range of video zoom lens are usually the same as those of a stereo microscope, but because the objective lens is one, its optical imaging is flat, not stereoscopic.

It has been observed that as most of the parametric features are close to stereo microscopes, video zoom lens is then classified as stereo microscope. In fact, it lacks the most important "stereoscopic" imaging features. Compared with other compound microscopes such as biological metallurgical microscopes, the total optical magnification of video zoom lens is generally below 40X, which is the coverage of low magnification range that these microscopes do not have.

Most of the video continuous zoom lens is to observe the electronic image, not through the eyepiece, but through the camera.
Video zoom lens can have relatively more objective lens and photographic eyepiece multiples for selection. At the same time, video zoom lens can also be designed as parallel light so as to add even more configuration accessories, such as observation eyepieces, aperture diaphragms, coaxial illumination light sources, reticles, and nosepieces that can change the viewing angle and direction, etc.
Regarding accessories of video zoom lens such as the stands and light source etc., generally, all accessories of stereo microscope can be used. Therefore, video zoom lens combination is flexible, compact, with strong adaptability and low cost, suitable for use in industry, especially extensively used in the electronics industry.
FiniteClose Λ
Microscopes and components have two types of optical path design structures.
One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope.
Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required.
The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects.

The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough.
Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective.
System Optical MagnificationClose Λ
The magnification of the objective lens refers to the lateral magnification, it is the ratio of the image to the real size after the original image is magnified by the instrument. This multiple refers to the length or width of the magnified object.
System optical magnification is the product of the eyepiece and the objective lens (objective lens zoom set) of the optical imaging part within the system.
Optical magnification = eyepiece multiple X objective lens/objective lens set

The maximum optical magnification of the microscope depends on the wavelength of the light to which the object is illuminated. The size of the object that can be observed must be greater than the wavelength of the light. Otherwise, the light cannot be reflected or transmitted, or recognized by the human eye. The shortest wavelength of ultraviolet light is 0.2 microns, so the resolution of the optical microscope in the visible range does not exceed 0.2 microns, or 200 nanometers. This size is converted to the magnification of the microscope, and it is the optical magnification of 2000X. Usually, the compound microscope can achieve 100X objective lens, the eyepiece is 20X, and the magnification can reach 2000X. If it is bigger, it will be called "invalid magnification", that is, the image is large, but the resolution is no longer increased, and no more details and information can be seen.
Total MagnificationClose Λ
Total magnification is the magnification of the observed object finally obtained by the instrument. This magnification is often the product of the optical magnification and the electronic magnification.
When it is only optically magnified, the total magnification will be the optical magnification.

Total magnification = optical magnification X electronic magnification
Total magnification = (objective X photo eyepiece) X (display size / camera sensor target )
Zoom RangeClose Λ
Zoom in zoom microscope means to obtain different magnifications by changing the focal length of the objective lens within a certain range through adjustment of some lens or lens set while not changing the position of the object plane (that is, the plane of the point of the observed object perpendicular to the optical axis) and the image plane (that is, the plane of the image imaging focus and perpendicular to the optical axis) of the microscope.
Zoom range refers to the range in which the magnification is from low to high. In the zoom range of the microscope, there is no need to adjust the microscope knob for focusing, and ensure that the image is always clear during the entire zoom process.
The larger the zoom range, the stronger the adaptability of the range for microscope observation, but the image effects at both ends of the low and high magnification should be taken into consideration, the larger the zoom range, the more difficult to design and manufacture, and the higher the cost will be.
Zoom RatioClose Λ
Zoom ratio is the ratio of the maximum magnification / the minimum magnification. Expressed as 1: (ratio of maximum magnification / minimum magnification). If the maximum magnification is 4.5X, the minimum magnification is 0.7X, then the zoom ratio = 4.5 / 0.7 = 6.4, the zoom ratio will be 1:6.4.
Zoom ratio is obtained by the intermediate magnification group of the microscope. When the magnification is increased or decreased by using other objective lenses, the zoom ratio does not change accordingly.
With the NosepieceClose Λ
When the microscope body changes the magnification, it is realized by adjusting the zoom drum or nosepiece. Generally, the lower case of the microscope is used as the zoom drum or nosepiece. When magnification conversion is required, it can be realized by turning the zoom drum or nosepiece.
Magnification Detent Close Λ
In the body of zoom microscope, zooming is continuous. When rotating to a certain position, generally an integral multiple, a positioning structure or detent is added, which has a distinct hand feel during the zooming process, and stops at this position.
When measuring, or testing by factory for unified standard magnification, a magnification detent device can avoid the error caused by the inaccurate multiple positioning of the optical magnification.
Objective Screw ThreadClose Λ
For microscopes of different manufacturers and different models, the thread size of their objectives may also be different.
In general, the objective threads are available in two standard sizes, allowing similar objectives between different manufacturers to be used interchangeably.
One is the British system: RMS type objective thread: 4/5in X 1/36in,
One is metric: M25 X 0.75mm thread.
Track StandClose Λ
Throughout the focusing range, the track stand moves up and down along the guide rail through the focusing mechanism to achieve the purpose of focusing the microscope. This kind of structure is relatively stable, and the microscope is always kept moving up and down vertically along a central axis. When the focus is adjusted, it is not easy to shake, and there is no free sliding phenomenon. It is a relatively common and safe and reliable accessory.
The size of the stand is generally small, flexible and convenient, and most of them are placed on the table for use, Therefore, together with the post stand, it is also called “desktop or table top stand".
With regard to the height of the stand, most manufacturers usually do not make it very high. If the guide rail is long, it is easy to deform, and relatively more difficult .
Dia. 76mm Scope HolderClose Λ
The 76mm stand scope holder is the most popular microscope body adapter size, suitable for stereo microscopes produced by most manufacturers.

Place the microscope body in a 76mm scope holder, tighten with screws to avoid shaking when the microscope is in use.
Because this stand scope holder is very common, some special-sized microscopes can also borrow and use this stand, but only need a specific adapter to connect the microscope body with a diameter of less than 76mm.
Stand Throat DepthClose Λ
Stand throat depth, also known as the throat depth, is an important parameter when selecting a microscope stand. When observing a relatively large object, a relatively large space is required, and a large throat depth can accommodate the object to move to the microscope observation center.
Focusing Knob Tightness AdjustableClose Λ
Different microscope bodies, different human operations, and different requirements for observation and operation, all require adjustment of the pre-tightening force of the stand that support microscope body.
Facing the stand just right, use both hands to reverse the force to adjust the tightness. (face the knob of one side just right, clockwise is to tighten, counterclockwise is to loosen)
In general, after long-time use, the knob will be loose, and adjustment is necessary.
Donut AdapterClose Λ
Donut adapter is an adapter used to convert the scope holder of the microscope and the size of the microscope body. For different manufacturers and different types of microscopes, as well as different stands, their adapters are often different and not interchangeable. This type of donut adapter can be used to connect different microscope stands and microscope bodies, which is very convenient for interchange of different manufacturers and microscope models.
It is usually to use this adapter cable to fix it to the body of the microscope, which is equivalent to changing the fixed diameter of the microscope, and then placing it on the microscope stand.
Microscope PlateClose Λ
According to different objects to be observed, the appropriate platen should be selected. The microscope plate materials include black and white, black and white finish; transparent glass, frosted glass, metal, etc.
Standard stands are generally configured with a suitable microscope plate, but different plates may need to be purchased separately.
Black and white microscope plate are made of general plastics, and the different backgrounds in black and white make the object more prominent.
Finish microscope plate eliminates reflections during observation.
Transparent glass plate is used when observing transparent or translucent objects, and the use of transmitted light source is to make the light penetrate the object to be observed as much as possible.
Finish glass plate, with its rough glass surface, can make the transmitted light more uniform and create a diffusing effect, avoiding exposure of the light shadow of the filament directly onto to the observed object.
Metal plate, relatively more solid, is more suitable when it is necessary to operate and cut.
Microscope plate is generally round shaped, on one side of the base there is a spring clip. When installing, align the plate with the clamp and push it in, and then press down the other end, so that the plate is smoothly embedded in to the circular card slot of the bottom plate.
When removing, grab the other end of the clip, push and lift up the plate.
Coupler/C-mount AdapterClose Λ
Coupler/C-mount adapter is an adapter commonly used for connection between the C-adapter camera (industrial camera) and a microscope.
Coupler for Microscope TypeClose Λ
Different coupler/C-mount-adapters are suitable for different microscopes. For some, some adapter accessories need to be replaced. See the applicable range of each coupler/C-mount-adapter for details.
Coupler MagnificationClose Λ
Coupler magnification refers to the line field magnification of the coupler/C-mount-adapter. With different magnifications of the adapter lens, images of different magnifications and fields of view can be obtained. The size of the image field of view is related to the sensor size and the coupler/C-mount-adapter magnification.

Camera image field of view (mm) = sensor diagonal / coupler/C-mount-adapter magnification.

For example: 1/2 inch sensor size, 0.5X coupler/C-mount-adapter coupler, field of view FOV (mm) = 8mm / 0.5 = 16mm.
The field of view number of the microscope 10X eyepiece is usually designed to be 18, 20, 22, 23mm, less than 1 inch (25.4mm). Since most commonly used camera sensor sizes are 1/3 and 1/2 inches, this makes the image field of view on the display always smaller than the field of view of the eyepiece for observation, and the visual perception becomes inconsistent when simultaneously viewed on both the eyepiece and the display. If it is changed to a 0.5X coupler/C-mount-adapter, the microscope image magnification is reduced by 1/2 and the field of view is doubled, then the image captured by the camera will be close to the range observed in the eyepiece.
Some adapters are designed without a lens, and their optical magnification is considered 1X.
For Camera Sensor SizeClose Λ
For the size of the lens field of view of the coupler/C-mount-adapter, in the design process, the size of the camera sensor imaging target should be considered. When the field of view of the lens is smaller than the target plane of the camera, “black border” and “dark corner” will appear.
The general microscope coupler/C-mount adapters are generally designed for the 1/2" camera targets. When a camera of 2/3 or larger target is used, the “dark corner” phenomenon will appear in the field of view. Especially, at present, DSLR cameras generally use large target plane design (1 inch full field of view), when used for microscopic photographing, the general DSLR camera coupler/C-mount adapter will have “black border”.
Generally, the “dark corner” that appears on the field of view is often that the center of the microscope and the camera are not aligned. Adjust the position of the screw on the camera adapter, or turn the camera adapter to adjust or change the effect.
C/CS-Mount CouplerClose Λ
At present, the coupler/C-mount adapter generally adopts the C/CS-Mount adapter to match with the industrial camera. For details, please refer to "Camera Lens Mount".
PackagingClose Λ
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection.
For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem.

 


Optical Data

 

Video Microscope Optical Data Sheet
P/NObjective Coupler
MZ07016131  (0.5X)MZ07016181  (0.67X)MZ07016151  (1X)MZ07016171  (2X)
MagnificationMagnificationMagnificationMagnification
MZ070142110.5X0.18-1.12X0.23-1.51X0.35-2.25X0.7-4.5X
MZ070143110.75X0.26-1.69X0.35-2.26X0.52-3.38X1.05-6.75X
MZ070145111.5X0.52-3.38X0.7-4.52X1.05-6.75X2.1-13.5X
MZ070146112X0.7-4.5X0.94-6.03X1.4-9X2.8-18X
1. Magnification=Objective Optical Magnification * Body Magnification * Coupler Magnification



Camera Image Sensor Specifications
No.Camera Image Sensor SizeCamera image Sensor Diagonal
(mm)(inch)
11/4 in. 4mm0.157"
21/3 in. 6mm0.236"
31/2.8 in. 6.592mm0.260"
41/2.86 in. 6.592mm0.260"
51/2.7 in. 6.718mm0.264"
61/2.5 in. 7.182mm0.283"
71/2.3 in. 7.7mm0.303"
81/2.33 in. 7.7mm0.303"
91/2 in. 8mm0.315"
101/1.9 in. 8.933mm0.352"
111/1.8 in. 8.933mm0.352"
121/1.7 in. 9.5mm0.374"
132/3 in. 11mm0.433"
141/1.2 in. 12.778mm0.503"
151 in. 16mm0.629"
161/1.1 in. 17.475mm0.688"



Digital Magnification Data Sheet
Image Sensor SizeImage Sensor Diagonal sizeMonitor
Screen Size (24in)
Digital Zoom Function
1/3 in. 6mm101.6
1. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size



Microscope Optical and Digital Magnifications Data Sheet
ObjectiveCouplerCameraMonitorVideo Microscope Optical MagnificationsDigital Zoom FunctionTotal MagnificationField of View (mm)
PNMagnificationPNMagnification Image Sensor SizeImage Sensor Diagonal sizeScreen Size
MZ070142110.5XMZ070161310.5X1/3 in. 6mm24in0.18-1.12X101.618.29-113.79X5.36-33.33mm
MZ070142110.5XMZ070161810.67X1/3 in. 6mm24in0.23-1.51X101.623.37-153.42X3.97-26.09mm
MZ070142110.5XMZ070161511X1/3 in. 6mm24in0.35-2.25X101.635.56-228.6X2.67-17.14mm
MZ070142110.5XMZ070161712X1/3 in. 6mm24in0.7-4.5X101.671.12-457.2X1.33-8.57mm
MZ070143110.75XMZ070161310.5X1/3 in. 6mm24in0.26-1.69X101.626.42-171.7X3.55-23.08mm
MZ070143110.75XMZ070161810.67X1/3 in. 6mm24in0.35-2.26X101.635.56-229.62X2.65-17.14mm
MZ070143110.75XMZ070161511X1/3 in. 6mm24in0.52-3.38X101.652.83-343.41X1.78-11.54mm
MZ070143110.75XMZ070161712X1/3 in. 6mm24in1.05-6.75X101.6106.68-685.8X0.89-5.71mm
MZ070145111.5XMZ070161310.5X1/3 in. 6mm24in0.52-3.38X101.652.83-343.41X1.78-11.54mm
MZ070145111.5XMZ070161810.67X1/3 in. 6mm24in0.7-4.52X101.671.12-459.23X1.33-8.57mm
MZ070145111.5XMZ070161511X1/3 in. 6mm24in1.05-6.75X101.6106.68-685.8X0.89-5.71mm
MZ070145111.5XMZ070161712X1/3 in. 6mm24in2.1-13.5X101.6213.36-1371.6X0.44-2.86mm
MZ070146112XMZ070161310.5X1/3 in. 6mm24in0.7-4.5X101.671.12-457.2X1.33-8.57mm
MZ070146112XMZ070161810.67X1/3 in. 6mm24in0.94-6.03X101.695.5-612.65X1-6.38mm
MZ070146112XMZ070161511X1/3 in. 6mm24in1.4-9X101.6142.24-914.4X0.67-4.29mm
MZ070146112XMZ070161712X1/3 in. 6mm24in2.8-18X101.6284.48-1828.8X0.33-2.14mm
1. Video Microscope Optical Magnifications=Objective Optical Magnification * Body Magnification * Coupler Magnification
2. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size
3. Total Magnification= Video Microscope Optical Magnifications * (Screen Size * 25.4) / Image Sensor Diagonal size
4. Field of View (mm)= Image Sensor Diagonal size / Video Microscope Optical Magnifications

Optional Accessories For This Product

More Info

Contains  
Parts Including
PictureP/NProduct Name
MZ070111010.7-4.5X Video Zoom Body
MZ070161310.5X Coupler
ST1703110176mm Track Stand
SA0208121040/76mm Donut
Packing  
Packaging TypeCarton Packaging
Packaging MaterialCorrugated Carton
Packaging Dimensions(1)36x30x40cm (14.173x11.811x15.748″)
Packaging Dimensions(2)15.2x15.2x15.2cm (6x6x6″)
Packaging Dimensions(3)10.5x5.5x13cm (4.133x2.165x5.118″)
Packaging Dimensions(4)15.2x15.2x15.2cm (6x6x6″)
Inner Packing MaterialPlastic Bag
Ancillary Packaging MaterialsExpanded Polystyrene
Gross Weight3.75kg (8.27lbs)
Minimum Packaging Quantity1pc
Transportation CartonCarton Packaging
Transportation Carton MaterialCorrugated Carton
Transportation Carton Dimensions(1)36x30x40cm (14.173x11.811x15.748″)
Transportation Carton Dimensions(2)15.2x15.2x15.2cm (6x6x6″)
Transportation Carton Dimensions(3)15.2x15.2x15.2cm (6x6x6″)
Transportation Carton Dimensions(4)15.2x15.2x15.2cm (6x6x6″)
Total Gross Weight of Transportation(kilogram)5.05
Total Gross Weight of Transportation(pound)11.133
Quantity of One Transportation Carton4pc

Related Products