Optical System | Finite |
System Optical Magnification | 0.35-2.25X |
Total Magnification | 0.35-2.25X |
Standard Objective | 1X Built-in Objective |
Standard Coupler | 0.5X |
0.7-4.5X Video Zoom Body | |
Body Optical System | Finite |
Body Magnification | 0.7-4.5X |
Zoom Range | 0.7-4.5X |
Zoom Ratio | 1:6.4 |
Zoom Operating Mode | With the Nosepiece |
Body Mounting Size for Stand | Dia. 40mm |
Magnification Detent | 1X per pre-set stop |
Body Mount Type for Coupler | Fastening Screw |
Body Mount Size for Coupler | Dia. 33.3mm |
Objective Screw Thread | M25x0.75mm |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 0.35kg (0.77lbs) |
Stand Type | Boom Stand |
Vertical Post Height | 384mm |
Maximum Vertical Post Extended Length | 254mm |
Vertical Post Diameter | Dia. 37.2mm |
Cross Adapter Type | Cross Hole Adapter |
Horizontal Arm Type | Horizontal Post |
Horizontal Arm Length | 544mm |
Horizontal Diameter | Dia. 37.2mm |
Mounting Hole on the Top of Horizontal Arm | 5/8 in. End Adapter |
Horizontal Rotation Angle | 360° Degree Rotatable |
Horizontal Arm Travel Distance on Z-Axis | 266mm |
Horizontal Arm Stretch Range | 480mm |
Horizontal Arm Maximum Load | 9.50kg (20.94lbs) |
Horizontal Arm Travel Mode on Horizontal Direction | Manual |
Horizontal Arm Travel Mode on Z Direction | Manual |
Base Type | Heavy Duty Base |
Base Shape | Rectangle |
Base Dimensions | 285x260x18mm |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 18.14kg (39.99lbs) |
Dimensions | 285x260x600mm (11.220x10.236x23.622 in. ) |
76mm E-Arm | |
Holder Adapter Type | Dia. 76mm Scope Holder |
Focus Distance | 50mm |
Coarse Focus Distance per Rotation | 20mm |
E-Arm Rotation Range on Horizontal Direction | 360° |
E-Arm Rotation Range on Z Direction | 180° |
E-Arm Mounting Adapter | 5/8 in. End Adapter |
Center Distance from E-Arm Adapter to Scope Holder | 130mm |
E-Arm Horizontal Adjustment Screw | Horizontal Adjustable |
Safety Protection Against Falling Screw | With Safety protection against falling Screw |
Surface Treatment | Spray Paint |
Material | Metal |
Color | White |
Net Weight | 0.84kg (1.85lbs) |
40/76mm Donut | |
Donut Adapter Type | Scope Mounting Converter |
Donut Adapter Size for Scope Mounting | Dia. 40mm |
Donut Adapter Size for Scope Holder | Dia. 76mm |
Donut Adapter Height | 20mm |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 0.18kg (0.40lbs) |
Applied Field | For MZ07011101 Video Zoom Body |
0.5X Coupler | |
Coupler Mount Type for Body | Fastening Screw |
Coupler Mount Size for Body | Dia. 33.3mm |
Coupler for Microscope Type | Video Zoom Lens Compatible |
Coupler Magnification | 0.5X |
For Camera Sensor Size | Under 1/2 in. |
C/CS-Mount Coupler | C-Mount |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 0.14kg (0.30lbs) |
Applied Field | For MZ0701 Series Video Zoom Body |
MZ0701 | MZ02210451 |
Technical Info
Video zoom lens, refers to microscope that has only one set of imaging optical paths. It can be considered as a set of dual optical path stereo microscopes. The magnification and multiple range of video zoom lens are usually the same as those of a stereo microscope, but because the objective lens is one, its optical imaging is flat, not stereoscopic. It has been observed that as most of the parametric features are close to stereo microscopes, video zoom lens is then classified as stereo microscope. In fact, it lacks the most important "stereoscopic" imaging features. Compared with other compound microscopes such as biological metallurgical microscopes, the total optical magnification of video zoom lens is generally below 40X, which is the coverage of low magnification range that these microscopes do not have. Most of the video continuous zoom lens is to observe the electronic image, not through the eyepiece, but through the camera. Video zoom lens can have relatively more objective lens and photographic eyepiece multiples for selection. At the same time, video zoom lens can also be designed as parallel light so as to add even more configuration accessories, such as observation eyepieces, aperture diaphragms, coaxial illumination light sources, reticles, and nosepieces that can change the viewing angle and direction, etc. Regarding accessories of video zoom lens such as the stands and light source etc., generally, all accessories of stereo microscope can be used. Therefore, video zoom lens combination is flexible, compact, with strong adaptability and low cost, suitable for use in industry, especially extensively used in the electronics industry. |
Microscopes and components have two types of optical path design structures. One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope. Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required. The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects. The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough. Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective. |
The magnification of the objective lens refers to the lateral magnification, it is the ratio of the image to the real size after the original image is magnified by the instrument. This multiple refers to the length or width of the magnified object. System optical magnification is the product of the eyepiece and the objective lens (objective lens zoom set) of the optical imaging part within the system. Optical magnification = eyepiece multiple X objective lens/objective lens set The maximum optical magnification of the microscope depends on the wavelength of the light to which the object is illuminated. The size of the object that can be observed must be greater than the wavelength of the light. Otherwise, the light cannot be reflected or transmitted, or recognized by the human eye. The shortest wavelength of ultraviolet light is 0.2 microns, so the resolution of the optical microscope in the visible range does not exceed 0.2 microns, or 200 nanometers. This size is converted to the magnification of the microscope, and it is the optical magnification of 2000X. Usually, the compound microscope can achieve 100X objective lens, the eyepiece is 20X, and the magnification can reach 2000X. If it is bigger, it will be called "invalid magnification", that is, the image is large, but the resolution is no longer increased, and no more details and information can be seen. |
Total magnification is the magnification of the observed object finally obtained by the instrument. This magnification is often the product of the optical magnification and the electronic magnification. When it is only optically magnified, the total magnification will be the optical magnification. Total magnification = optical magnification X electronic magnification Total magnification = (objective X photo eyepiece) X (display size / camera sensor target ) |
Zoom in zoom microscope means to obtain different magnifications by changing the focal length of the objective lens within a certain range through adjustment of some lens or lens set while not changing the position of the object plane (that is, the plane of the point of the observed object perpendicular to the optical axis) and the image plane (that is, the plane of the image imaging focus and perpendicular to the optical axis) of the microscope. Zoom range refers to the range in which the magnification is from low to high. In the zoom range of the microscope, there is no need to adjust the microscope knob for focusing, and ensure that the image is always clear during the entire zoom process. The larger the zoom range, the stronger the adaptability of the range for microscope observation, but the image effects at both ends of the low and high magnification should be taken into consideration, the larger the zoom range, the more difficult to design and manufacture, and the higher the cost will be. |
Zoom ratio is the ratio of the maximum magnification / the minimum magnification. Expressed as 1: (ratio of maximum magnification / minimum magnification). If the maximum magnification is 4.5X, the minimum magnification is 0.7X, then the zoom ratio = 4.5 / 0.7 = 6.4, the zoom ratio will be 1:6.4. Zoom ratio is obtained by the intermediate magnification group of the microscope. When the magnification is increased or decreased by using other objective lenses, the zoom ratio does not change accordingly. |
When the microscope body changes the magnification, it is realized by adjusting the zoom drum or nosepiece. Generally, the lower case of the microscope is used as the zoom drum or nosepiece. When magnification conversion is required, it can be realized by turning the zoom drum or nosepiece. |
In the body of zoom microscope, zooming is continuous. When rotating to a certain position, generally an integral multiple, a positioning structure or detent is added, which has a distinct hand feel during the zooming process, and stops at this position. When measuring, or testing by factory for unified standard magnification, a magnification detent device can avoid the error caused by the inaccurate multiple positioning of the optical magnification. |
For microscopes of different manufacturers and different models, the thread size of their objectives may also be different. In general, the objective threads are available in two standard sizes, allowing similar objectives between different manufacturers to be used interchangeably. One is the British system: RMS type objective thread: 4/5in X 1/36in, One is metric: M25 X 0.75mm thread. |
Boom stand is also called universal stand. It is a relatively large pole type stand. The height and length of the stand are big, and it can be freely adjusted in height, length and various angles. Its large weight ensures stable support and occupation of large space, but it can make the microscope free to move in a wide range with convenience. Boom stand is suitable for observing large objects. The direction of boom stand is flexible, and when in use, various kinds of positions and methods can be adopted, such as front, side, and tilt etc., to facilitate the layout of the workbench. On the side of the crossbar of the boom stand, a 5/8-inch connecting hole is generally left for connecting various focusing mechanisms and microscopes. The base of the boom stand usually only plays a fixing and supporting role. Under the observation of the microscope, it is an empty workbench, which can be used to place various platforms, work operating surfaces, and tools, etc., and can be freely combined into different working positions. When the base is large, the object to be observed can also be placed. In industrial places, most of the working positions are fixed. Sometimes, in one working position, a lot of tools, equipment and instruments need to be placed.. Because the microscope is relatively large in size and takes up also a relatively bigger space, and not convenient to move back and forth, therefore for purpose of use, the boom stand can be placed in an appropriate position, and does not need to occupy the most commonly used work tables. When in use, the microscope can be moved over, and pushed to the side when not in use. This is very suitable for use in electronics factories, installation and maintenance, medical and animal anatomy, archaeology and other industries. Boom stand generally does not have a fixed focusing device, and you can choose a variety of flexible accessories. Because the stand needs to ensure flexibility, therefore there are many locking buttons in all directions. In any time after adjustment, it must be ensured that each knob is in a locked state to avoid sliding, tilting and flipping of the microscope, thereby damaging the microscope and the items on the workbench. |
The eyepiece of the microscope can have different viewing or observing directions. When the position of the microscope is uncomfortable, the direction of the eyepiece tube of the microscope can be adjusted, to facilitate observation and operation. Placement method of different viewing angles of the microscope: General direction: the support column is behind the object to be observed Reverse direction: the support column is in front of the object to be observed Lateral direction: the support column is on the side of the object to be observed Rotating eyepiece tube, different microscopes may have different methods, for some, the direction is confirmed when installing the eyepiece tube of the microscope, for some, by rotating the body of the microscope, and for some, by rotating the support member on the support or holder of the microscope. |
Usually the universal joint is called E-Arm, i.e., Easy-Arm, also known as Universal Arm. Many people in the industry call it Bonder Arm, which refers to the components that connect the microscope on the COG Bonding Machine. At the tail of the E-arm there is a standard 5/8 inch (0.625 inch, 15.875mm) connector. The connector can be moved freely in both horizontal and vertical directions, and can also be fixed at an angular position in the vertical direction to facilitate microscope observation from different angles. E-arm can be connected to various kinds of microscope stands with 5/8-inch adapters, such as boom stand, flexible arm etc. It is also possible to connect various kinds of microscopes by adding or replacing different adapters. Note that, in general, these stands themselves are not directly configured with this E-arm, and separate purchase is necessary. |
The 76mm stand scope holder is the most popular microscope body adapter size, suitable for stereo microscopes produced by most manufacturers. Place the microscope body in a 76mm scope holder, tighten with screws to avoid shaking when the microscope is in use. Because this stand scope holder is very common, some special-sized microscopes can also borrow and use this stand, but only need a specific adapter to connect the microscope body with a diameter of less than 76mm. |
Donut adapter is an adapter used to convert the scope holder of the microscope and the size of the microscope body. For different manufacturers and different types of microscopes, as well as different stands, their adapters are often different and not interchangeable. This type of donut adapter can be used to connect different microscope stands and microscope bodies, which is very convenient for interchange of different manufacturers and microscope models. It is usually to use this adapter cable to fix it to the body of the microscope, which is equivalent to changing the fixed diameter of the microscope, and then placing it on the microscope stand. |
Coupler/C-mount adapter is an adapter commonly used for connection between the C-adapter camera (industrial camera) and a microscope. |
Different coupler/C-mount-adapters are suitable for different microscopes. For some, some adapter accessories need to be replaced. See the applicable range of each coupler/C-mount-adapter for details. |
Coupler magnification refers to the line field magnification of the coupler/C-mount-adapter. With different magnifications of the adapter lens, images of different magnifications and fields of view can be obtained. The size of the image field of view is related to the sensor size and the coupler/C-mount-adapter magnification. Camera image field of view (mm) = sensor diagonal / coupler/C-mount-adapter magnification. For example: 1/2 inch sensor size, 0.5X coupler/C-mount-adapter coupler, field of view FOV (mm) = 8mm / 0.5 = 16mm. The field of view number of the microscope 10X eyepiece is usually designed to be 18, 20, 22, 23mm, less than 1 inch (25.4mm). Since most commonly used camera sensor sizes are 1/3 and 1/2 inches, this makes the image field of view on the display always smaller than the field of view of the eyepiece for observation, and the visual perception becomes inconsistent when simultaneously viewed on both the eyepiece and the display. If it is changed to a 0.5X coupler/C-mount-adapter, the microscope image magnification is reduced by 1/2 and the field of view is doubled, then the image captured by the camera will be close to the range observed in the eyepiece. Some adapters are designed without a lens, and their optical magnification is considered 1X. |
For the size of the lens field of view of the coupler/C-mount-adapter, in the design process, the size of the camera sensor imaging target should be considered. When the field of view of the lens is smaller than the target plane of the camera, “black border” and “dark corner” will appear. The general microscope coupler/C-mount adapters are generally designed for the 1/2" camera targets. When a camera of 2/3 or larger target is used, the “dark corner” phenomenon will appear in the field of view. Especially, at present, DSLR cameras generally use large target plane design (1 inch full field of view), when used for microscopic photographing, the general DSLR camera coupler/C-mount adapter will have “black border”. Generally, the “dark corner” that appears on the field of view is often that the center of the microscope and the camera are not aligned. Adjust the position of the screw on the camera adapter, or turn the camera adapter to adjust or change the effect. |
At present, the coupler/C-mount adapter generally adopts the C/CS-Mount adapter to match with the industrial camera. For details, please refer to "Camera Lens Mount". |
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection. For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem. |
Video Microscope Optical Data Sheet | |||||
P/N | Objective | Coupler | |||
MZ07016131 (0.5X) | MZ07016181 (0.67X) | MZ07016151 (1X) | MZ07016171 (2X) | ||
Magnification | Magnification | Magnification | Magnification | ||
MZ07014211 | 0.5X | 0.18-1.12X | 0.23-1.51X | 0.35-2.25X | 0.7-4.5X |
MZ07014311 | 0.75X | 0.26-1.69X | 0.35-2.26X | 0.52-3.38X | 1.05-6.75X |
MZ07014511 | 1.5X | 0.52-3.38X | 0.7-4.52X | 1.05-6.75X | 2.1-13.5X |
MZ07014611 | 2X | 0.7-4.5X | 0.94-6.03X | 1.4-9X | 2.8-18X |
1. Magnification=Objective Optical Magnification * Body Magnification * Coupler Magnification |
Camera Image Sensor Specifications | |||
No. | Camera Image Sensor Size | Camera image Sensor Diagonal | |
(mm) | (inch) | ||
1 | 1/4 in. | 4mm | 0.157" |
2 | 1/3 in. | 6mm | 0.236" |
3 | 1/2.8 in. | 6.592mm | 0.260" |
4 | 1/2.86 in. | 6.592mm | 0.260" |
5 | 1/2.7 in. | 6.718mm | 0.264" |
6 | 1/2.5 in. | 7.182mm | 0.283" |
7 | 1/2.3 in. | 7.7mm | 0.303" |
8 | 1/2.33 in. | 7.7mm | 0.303" |
9 | 1/2 in. | 8mm | 0.315" |
10 | 1/1.9 in. | 8.933mm | 0.352" |
11 | 1/1.8 in. | 8.933mm | 0.352" |
12 | 1/1.7 in. | 9.5mm | 0.374" |
13 | 2/3 in. | 11mm | 0.433" |
14 | 1/1.2 in. | 12.778mm | 0.503" |
15 | 1 in. | 16mm | 0.629" |
16 | 1/1.1 in. | 17.475mm | 0.688" |
Digital Magnification Data Sheet | ||
Image Sensor Size | Image Sensor Diagonal size | Monitor |
Screen Size (24in) | ||
Digital Zoom Function | ||
1/3 in. | 6mm | 101.6 |
1. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size |
Microscope Optical and Digital Magnifications Data Sheet | ||||||||||
Objective | Coupler | Camera | Monitor | Video Microscope Optical Magnifications | Digital Zoom Function | Total Magnification | Field of View (mm) | |||
PN | Magnification | PN | Magnification | Image Sensor Size | Image Sensor Diagonal size | Screen Size | ||||
MZ07014211 | 0.5X | MZ07016131 | 0.5X | 1/3 in. | 6mm | 24in | 0.18-1.12X | 101.6 | 18.29-113.79X | 5.36-33.33mm |
MZ07014211 | 0.5X | MZ07016181 | 0.67X | 1/3 in. | 6mm | 24in | 0.23-1.51X | 101.6 | 23.37-153.42X | 3.97-26.09mm |
MZ07014211 | 0.5X | MZ07016151 | 1X | 1/3 in. | 6mm | 24in | 0.35-2.25X | 101.6 | 35.56-228.6X | 2.67-17.14mm |
MZ07014211 | 0.5X | MZ07016171 | 2X | 1/3 in. | 6mm | 24in | 0.7-4.5X | 101.6 | 71.12-457.2X | 1.33-8.57mm |
MZ07014311 | 0.75X | MZ07016131 | 0.5X | 1/3 in. | 6mm | 24in | 0.26-1.69X | 101.6 | 26.42-171.7X | 3.55-23.08mm |
MZ07014311 | 0.75X | MZ07016181 | 0.67X | 1/3 in. | 6mm | 24in | 0.35-2.26X | 101.6 | 35.56-229.62X | 2.65-17.14mm |
MZ07014311 | 0.75X | MZ07016151 | 1X | 1/3 in. | 6mm | 24in | 0.52-3.38X | 101.6 | 52.83-343.41X | 1.78-11.54mm |
MZ07014311 | 0.75X | MZ07016171 | 2X | 1/3 in. | 6mm | 24in | 1.05-6.75X | 101.6 | 106.68-685.8X | 0.89-5.71mm |
MZ07014511 | 1.5X | MZ07016131 | 0.5X | 1/3 in. | 6mm | 24in | 0.52-3.38X | 101.6 | 52.83-343.41X | 1.78-11.54mm |
MZ07014511 | 1.5X | MZ07016181 | 0.67X | 1/3 in. | 6mm | 24in | 0.7-4.52X | 101.6 | 71.12-459.23X | 1.33-8.57mm |
MZ07014511 | 1.5X | MZ07016151 | 1X | 1/3 in. | 6mm | 24in | 1.05-6.75X | 101.6 | 106.68-685.8X | 0.89-5.71mm |
MZ07014511 | 1.5X | MZ07016171 | 2X | 1/3 in. | 6mm | 24in | 2.1-13.5X | 101.6 | 213.36-1371.6X | 0.44-2.86mm |
MZ07014611 | 2X | MZ07016131 | 0.5X | 1/3 in. | 6mm | 24in | 0.7-4.5X | 101.6 | 71.12-457.2X | 1.33-8.57mm |
MZ07014611 | 2X | MZ07016181 | 0.67X | 1/3 in. | 6mm | 24in | 0.94-6.03X | 101.6 | 95.5-612.65X | 1-6.38mm |
MZ07014611 | 2X | MZ07016151 | 1X | 1/3 in. | 6mm | 24in | 1.4-9X | 101.6 | 142.24-914.4X | 0.67-4.29mm |
MZ07014611 | 2X | MZ07016171 | 2X | 1/3 in. | 6mm | 24in | 2.8-18X | 101.6 | 284.48-1828.8X | 0.33-2.14mm |
1. Video Microscope Optical Magnifications=Objective Optical Magnification * Body Magnification * Coupler Magnification | ||||||||||
2. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size | ||||||||||
3. Total Magnification= Video Microscope Optical Magnifications * (Screen Size * 25.4) / Image Sensor Diagonal size | ||||||||||
4. Field of View (mm)= Image Sensor Diagonal size / Video Microscope Optical Magnifications |
Contains | |||||||||||||||||||
Parts Including | |||||||||||||||||||
|
Packing | |
Packaging Type | Carton Packaging |
Packaging Material | Corrugated Carton |
Packaging Dimensions(1) | 67x32x18cm (26.378x12.598x7.087″) |
Packaging Dimensions(2) | 15.2x15.2x15.2cm (6x6x6″) |
Packaging Dimensions(3) | 10.5x5.5x13cm (4.133x2.165x5.118″) |
Packaging Dimensions(4) | 15.2x15.2x15.2cm (6x6x6″) |
Packaging Dimensions(5) | 29x16x18cm (11.417x6.299x7.087″) |
Inner Packing Material | Plastic Bag |
Ancillary Packaging Materials | Expanded Polystyrene |
Gross Weight | 17.88kg (39.42lbs) |
Minimum Packaging Quantity | 1pc |
Transportation Carton | Carton Packaging |
Transportation Carton Material | Corrugated Carton |
Transportation Carton Dimensions(1) | 67x32x18cm (26.378x12.598x7.087″) |
Transportation Carton Dimensions(2) | 15.2x15.2x15.2cm (6x6x6″) |
Transportation Carton Dimensions(3) | 10.5x5.5x13cm (4.133x2.165x5.118″) |
Transportation Carton Dimensions(4) | 15.2x15.2x15.2cm (6x6x6″) |
Transportation Carton Dimensions(5) | 29x16x18cm (11.417x6.299x7.087″) |
Total Gross Weight of Transportation(kilogram) | 17.88 |
Total Gross Weight of Transportation(pound) | 39.42 |
Quantity of One Transportation Carton | 5pc |