Optical System | Finite |
Mechanical Tube Length | 160mm |
System Optical Magnification | 100X |
Expandable System Optical Magnification (Optional Parts Required) | 20X/40X/60X/100X |
Total Magnification | 100X |
Standard Eyepiece | 10X Eyepiece |
Standard Objective | 10X Achromatic Objective |
Eyepiece Type | Standard Eyepiece |
Eyepiece Optical Magnification | 10X |
Plan Eyepiece | Plan Eyepiece |
Eyepiece Size for Eye Tube | Dia. 23mm |
Eyepiece Field of View | Dia. 12mm |
Eyepiece Size for Reticle | Dia. 16mm |
Reticle Type | X-Axis Crosshair Scale |
Reticle Dimensions | Dia. 16x0.5mm |
Stand Height | 200mm |
Focus Mode | Manual |
Focus Distance | 42mm |
Coarse Focus Distance per Rotation | 21mm |
Focusing Knob Tightness Adjustable | Tightness Not Adjustable |
Illumination Type | LED Reflection Light |
Top Illumination | Oblique Top Light |
Top Illumination Type | LED |
Surface Treatment | Natural Oxidation |
Material | Aluminum |
Color | White |
Net Weight | 0.60kg (1.32lbs) |
Dimensions | Dia. 63x180mm ( Dia. 2.480x7.087 in. ) |
Technical Info
Portable microscope is the general term for microscopes that are simple in design, easy to carry and convenient for field observation. It usually does not refer to a certain kind of microscope. Portable microscope is simple in design, but also like a microscope, there is at least one eyepiece and one objective lens, or is imaged by a camera, and has a stand and focusing device. Most of them can also be connected to a camera or an eyepiece camera, and then connect the monitor or store digital images. Portable microscope generally adopts hand-held operation, and has simple configuration, fixed working distance, convenient for quick observation. Generally, portable microscope has a light source with a battery, which is convenient to carry to work place and field work, and is suitable for application of various industries and scenarios. |
Microscopes and components have two types of optical path design structures. One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope. Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required. The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects. The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough. Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective. |
For objective lens design of finite microscope, its mechanical tube length is the distance from the objective nosepiece shoulder of the objective lens to the eyepiece seat in the tubes, that is, the eyepiece shoulder. There are two standards in the traditional microscope structure, namely, DIN and JIS. DIN (Deutsches Institute fur Normung) is a popular international standard for microscopes, using 195mm standard conjugate distance (also known as object to primary image distance, 36mm objective lens parfocal distance, and 146.5mm optical tube length. JIS (Japanese Industrial Standard) is a standard adopted by some Japanese manufacturers, using 160mm standard conjugate distance (also known as object to primary image distance), 45mm objective lens parfocal distance), and 150mm optical tube length. Using the same microscope standard design, the objective lenses can be used interchangeably. |
The magnification of the objective lens refers to the lateral magnification, it is the ratio of the image to the real size after the original image is magnified by the instrument. This multiple refers to the length or width of the magnified object. System optical magnification is the product of the eyepiece and the objective lens (objective lens zoom set) of the optical imaging part within the system. Optical magnification = eyepiece multiple X objective lens/objective lens set The maximum optical magnification of the microscope depends on the wavelength of the light to which the object is illuminated. The size of the object that can be observed must be greater than the wavelength of the light. Otherwise, the light cannot be reflected or transmitted, or recognized by the human eye. The shortest wavelength of ultraviolet light is 0.2 microns, so the resolution of the optical microscope in the visible range does not exceed 0.2 microns, or 200 nanometers. This size is converted to the magnification of the microscope, and it is the optical magnification of 2000X. Usually, the compound microscope can achieve 100X objective lens, the eyepiece is 20X, and the magnification can reach 2000X. If it is bigger, it will be called "invalid magnification", that is, the image is large, but the resolution is no longer increased, and no more details and information can be seen. |
Total magnification is the magnification of the observed object finally obtained by the instrument. This magnification is often the product of the optical magnification and the electronic magnification. When it is only optically magnified, the total magnification will be the optical magnification. Total magnification = optical magnification X electronic magnification Total magnification = (objective X photo eyepiece) X (display size / camera sensor target ) |
Eyepiece optical magnification is the visual magnification of the virtual image after initial imaging through the eyepiece. When the human eye observes through the eyepiece, the ratio of the tangent of the angle of view of the image and the tangent of the angle of view of the human eye when viewing or observing the object directly at the reference viewing distance is usually calculated according to 250 mm/focal length of eyepiece. The standard configuration of a general microscope is a 10X eyepiece. Usually, the magnification of the eyepiece of compound microscope is 5X, 8X, 10X, 12.5X, 16X, 20X. As stereo microscope has a low total magnification, its eyepiece magnification generally does not use 5X, but can achieve 25X, 30X and other much bigger magnification. |
The eyepiece field of view is the diameter of the field diaphragm of the eyepiece, or the diameter of the image plane of the field diaphragm imaged by the field diaphragm. The diameter of a large field of view can increase the viewing range, and see more detail in the field of view. However, if the field of view is too large, the spherical aberration and distortion around the eyepiece will increase, and the stray light around the field of view will affect the imaging effect. |
Different microscope bodies, different human operations, and different requirements for observation and operation, all require adjustment of the pre-tightening force of the stand that support microscope body. Facing the stand just right, use both hands to reverse the force to adjust the tightness. (face the knob of one side just right, clockwise is to tighten, counterclockwise is to loosen) In general, after long-time use, the knob will be loose, and adjustment is necessary. |
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection. For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem. |
Packing | |
Packaging Type | Carton Packaging |
Packaging Material | Corrugated Carton |
Packaging Dimensions(1) | 19x11x7.5cm (7.480x4.331x2.953″) |
Inner Packing Material | Plastic Bag |
Ancillary Packaging Materials | Sponge |
Gross Weight | 0.93kg (2.05lbs) |
Minimum Packaging Quantity | 1pc |
Transportation Carton | Carton Packaging |
Transportation Carton Material | Corrugated Carton |
Transportation Carton Dimensions(1) | 19x11x7.5cm (7.480x4.331x2.953″) |
Total Gross Weight of Transportation(kilogram) | 0.93 |
Total Gross Weight of Transportation(pound) | 2.05 |